Data independent acquisition for differential quantification of isobaric phosphopeptides and other protein post-translational modifications

Simone Sidoli, Johayra Simithy, Benjamin A. Garcia

06/04/2017, Skyline User Meeting, ASMS 2017

The role of post-translational modifications

Advanced Review
Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding Sudhakaran Prabakaran, ${ }^{1}$ Guy Lippens, ${ }^{2}$ Hanno Steen ${ }^{3}$ and Jeremy Gunawardena ${ }^{1}$

Post-translational modifications (PTMs) are critical regulators of protein function, half-life and localization

A post-translational modification is covalently bound to a protein after its translation. It can be a small chemical tag, or a big biomolecule, or a proteolytic cleavage

Assembled protein

The role of combinatorial post-translational modifications

In the Garcia lab, we work with combinatorial PTMs and investigate their "cross-talk"

In protein science, a cross-talk between PTMs is an event where one PTM blocks or modifies the signal provided by another PTM. A cross-talk is "positive" if, for instance, a second PTM is required to fulfill a function that a single PTM cannot provide

Positive cross-talk

Examples of histone PTM cross-talk

Histone modifications

(

 ${ }^{+} \mathrm{H}_{3} \mathrm{~N}-$ SETA...EKAPVKKKAAKKAGGTPRKA $\underset{20}{15} \underset{20}{\text { SGPPVSELITKAVAASKERSGVSLAALKKAL_..GYDVEKNNSRIKLGLKSLVSKGTLVQTKGTGASGSFKLNK }}$

Nearby PTMs is common in all proteins


```
Mlecular Systems Biologg 8; Atricle number 599; doi:10.1038/mb. 2012.31
```


Deciphering a global network of functionally associated post-translational modifications

```
Pablo Minguez', Luca Parca', Francesca Diella ',3, Daniel R Mende', Runjun Kumar', Manuela Helmer-Citterich', Anne-Claude
``` Gavin', Vera van Noort' and Peer Bork \({ }^{1,5, *}\)

\section*{proiteome \\ -research}

Spatial and Temporal Effects in Protein Post-translational Modification Distributions in the Developing Mouse Brain Alistair V. G. Edwards, \({ }^{\dagger}\) Gregory J. Edwards, \({ }^{\ddagger}\) Veit Schwämmle, \({ }^{\dagger}\) Henrik Saxtorph, \({ }^{\S}\) and Martin R. Larsen* \({ }^{*}\)

PTMs are more frequently found nearby as compared to random. This is mostly due to enzyme docking, limitation in accessible protein surface, and evolutionary preservation of meaningful PTM domains

Density plot of phosphorylation distances on a phosphoproteome. The x-axis is the distance between phosphosites (0 in the middle)

Problem with mass spectrometry:

Nearby PTMs can easily co-localize on the same peptide i.e.

Presence of isobaric peptides

\section*{Quantitative discrimination of isobaric peptides}

These PTMs have frequently different functions
Discriminating their abundance is critical
Extracting the MS ion chromatogram is insufficient
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{H3K18ac} & \multicolumn{2}{|l|}{H3K23ac} \\
\hline Sequence & b & \(y\) & b & \(y\) \\
\hline K & 227.15 & 1140.71 & 241.19 & 1140.71 \\
\hline Q & 355.21 & 914.57 & 369.25 & 900.53 \\
\hline L & 468.30 & 786.51 & 482.34 & 772.47 \\
\hline A & 539.33 & 673.42 & 553.37 & 659.38 \\
\hline T & 640.38 & 602.39 & 654.42 & 588.35 \\
\hline K & 824.53 & 501.34 & 824.53 & 487.30 \\
\hline A & 895.56 & 317.19 & 895.56 & 317.19 \\
\hline A & 966.60 & 246.16 & 966.60 & 246.16 \\
\hline R & 1122.70 & 175.12 & 1122.70 & 175.12 \\
\hline
\end{tabular}

Example with histone H3 K18/K23 acetylation

\section*{Data independent acquisition - profile of fragment ions}

The Garcia lab has been committed in optimizing MS methods for discriminating isobaric peptides

\section*{Quantitative discrimination of isobaric peptides}
(H3 aa 18-26) KQLATKAAR 1ac

Fragment ions are used to divide the precursor area intensity between the two forms

\section*{When isobaric forms are more than two}
\begin{tabular}{|c|c|}
\hline ac & \[
\begin{aligned}
& \text { ac ac } \\
& \mathrm{GK}_{5} \mathrm{GGK}_{8} \mathrm{GLGK}_{12} \mathrm{GGAK}_{16} \mathrm{R}
\end{aligned}
\] \\
\hline \(\mathrm{GK}_{5} \mathrm{GGK}_{8} \mathrm{GLGK} \mathrm{K}_{12} \mathrm{GGAK}_{16} \mathrm{R}\) & \[
\begin{gathered}
\mathrm{ac} \\
\mathrm{GK}_{5} \mathrm{GGK}_{8} \mathrm{GLGK}_{12} \mathrm{GGAK}_{16} \mathrm{R}
\end{gathered}
\] \\
\hline \[
\begin{gathered}
\mathrm{ac} \\
\mathrm{GK}_{5} \mathrm{GGK}_{8} \mathrm{GLGK}_{12} \mathrm{GGAK}_{16} \mathrm{R}
\end{gathered}
\] & \[
\begin{array}{cc}
\mathrm{ac} \\
\mathrm{GK}_{5} \mathrm{GGK}_{8} \mathrm{GLGK}_{12} \mathrm{GGAK}_{16}
\end{array}
\] \\
\hline \[
\begin{gathered}
a c \\
\text { GK }_{5} \text { GGK }_{8} \text { GLGK }_{12} \text { GGAK }_{16} \text { R }
\end{gathered}
\] & \[
\begin{array}{cc}
\text { ac } \\
\mathrm{GK}_{5} \mathrm{GGK}_{8} \mathrm{GLGK}_{12} \mathrm{GGAK}_{16} \mathrm{R} \\
& \mathrm{ac} \\
\mathrm{ac}
\end{array}
\] \\
\hline \[
\text { GK }_{5} \text { GGK }_{8} \text { GLGK }_{12} \text { GGAK }_{16} \mathrm{R}
\] & \[
\begin{gathered}
\mathrm{GK}_{5} \mathrm{GGK}_{8} \mathrm{GLGK}_{12} \mathrm{GGAK}_{16} \mathrm{R} \\
\text { ac }
\end{gathered}
\] \\
\hline & \(\mathrm{GK}_{5} \mathrm{GGK}_{8} \mathrm{GLGK} \mathrm{l}_{12} \mathrm{GGAK}_{16} \mathrm{R}\) \\
\hline
\end{tabular}

\section*{When isobaric forms are more than two}

\section*{Software for histone PTM analysis}
(1) MATLAB software

EpiProfile Quantifies Histone Peptides With Modifications by Extracting Retention Time and Intensity in High-resolution Mass Spectra**
Zuo-Fei Yuan \(\ddagger\), Shu Lin \(\ddagger\), Rosalynn C. Molden§, Xing-Jun Cao \(\ddagger\), Natarajan V. Bhanu \(\ddagger\) Xiaoshi Wang \(\ddagger\), Simone Sidoli \(\ddagger\), Shichong Liuł, and Benjamin A. Garcia \(\ddagger\)
(3) New Skyline templates for rare histone PTMs

Histone crotonylation

Histone butyrylation
(2) Skyline templates

\section*{Getting there also with middle-down MS}

\section*{ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALRE}

Example of human canonical histone H3 N-terminal tail (aa 1-50) and possible modifiable sites
http://middle-down.github.io/Software/

The same precursor mass can be hundreds of isobaric forms (theoretically, many more!)

For quantification, we use a combination of MS/MS ion intensity (DDA) and counting \# spectra corresponding to the same identification

\section*{Software for middle-down Proteomics}

\section*{View On Cithub}

ZIP TAR

Welcome to the webpage of the middle-down Proteomics software tools. The page currenty Welcome to the webpage of the middale-down Proteomics software tools. The page currenty (Martix Science, UK) databases searching engine. The tools are made in collaboration between the University of Southerm Denmark and the University of Pennsylvania. The website contains Histone Coder and isoScale (peer reviewed in Proteomics 2014 , see below) and a new beta version of both integrated soffware called isoScale slim.

Ify you want to access our data repository, please vist the Cross-talk database
Histone Coder - Download
istone Coder counts the number of MS/MS ions in a given spectrum to determine the unambiguous localization of a post-translational modification (PTM). The soffware lists number and type of site determining ions found between the assigned PTM localization by Mascot (Marrix

Isobaric forms in large-scale PTM-omics

\section*{Example with phosphoproteomics}

Phosphorylation is the most frequent PTM detected on proteins (>250,000 non-redundant sites, PhosphoSitePlus)

Elution
Phosphorylated peptides

Flow-through

\section*{Isobaric species in phosphoproteomics}

\section*{Isobaric species in phosphoproteomics}
total phosphopeptide IDs
(Table S1)

with unique quantifiable fragment ions (Skyline file)

Our first attempt was only partially successful. Some conclusions:
1) I clearly need to get better with Skyline
2) Standard DDA methods are insufficient to detect most isobaric phosphopeptides
3) Defining unique fragment ions useful for discriminating the isobaric forms is currently the major bottleneck

\section*{We know we are not alone}

\section*{poroteome \\ -research} Article
pubs.acs.org.jpr

FASIL-MS: An Integrated Proteomic and Bioinformatic Workflow To Universally Quantitate In Vivo-Acetylated Positional Isomers
Dijana Vitko, \({ }^{\dagger}\) Peter Májek, \({ }^{\dagger}\) Erika Schirghuber, \({ }^{\dagger, \hbar, \%}\) Stefan Kubicek, \({ }^{\dagger,{ }^{\dagger}}\) and Keiryn L. Bennett \({ }^{*,{ }^{\dagger}}\)
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the
Austrian Academy of Sciences, A-1090 Vienna, Austria
From ASMS 2017

«... we find that in any given experiment approximately \(40 \%\) of phosphopeptides exist as at least two significantly localized positional isomers.»

\section*{Conclusions}

Isobaric modified peptides have been overlooked for too long, while they hide fundamental information about biological systems and PTM cross-talk
- Independently from the quantification method (label-free, SILAC, isobaric labeling), the profile of the fragment ions is required to discriminate isobaric forms. DIA seems to be currently the only method suitable for the issue
- Because isobaric forms do not always completely co-elute, a single MS/MS spectrum is not sufficient to estimate their relative ratio
- Future spectral libraries need to include isobaric peptides, and software need to cope with differential quantification of modified peptides with the same mass but different modified residues
- This is already a common practice in the analysis of histone peptides. It should become routine for large-scale proteomics as well

\section*{Acknowledgments}

The Garcia lab:
Benjamin A. Garcia
Johayra Simithy
Katarzyna Kulej
Zuo-Fei Yuan
Rina Fujiwara

\section*{Funding:}

NIH GM110174, CA196539 and Al118891

Leukemia \& Lymphoma Society```

