

PRM Method Development and Data Analysis with Skyline

With

Brendan MacLean (Principal Developer, Skyline) Eduard Sabidó, Ph.D. (Head of the UPF/CRG Proteomics Unit) Cristina Chiva, Ph.D. (PRM researcher, CRG Proteomics Unit)

Agenda

- Welcome from the Skyline team!
- PRM Method Development and Data Analysis with Skyline
 - Introduction with Brendan MacLean
 - Theoretical concepts and benefits of PRM with Eduard Sabidó
 - Tutorial with Cristina Chiva
- Audience Q&A submit questions to Google Form:

https://skyline.ms/QA4Skyline.url

It Began as Targeted MS/MS (pseudo-SRM)

- ASMS 2011 Poster presentation (Birgit Schilling)
 - Skyline: Targeted Proteomics with Extracted Ion Chromatograms from Full-Scan Mass Spectra
- JPR May, 2012 Sherrod, et. al (started by Amy Ham, 2009)
 - Label-Free Quantitation of Protein Modifications by Pseudo-Selected Reaction Monitoring with Internal Reference Peptides
- MCP Nov, 2012 Peterson, et. al (Coon lab) named **PRM**
 - Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics
- Anal. Chem. 2015 Schilling, et. al latest on Skyline PRM for HRMS
 - Multiplexed, Scheduled, High-Resolution Parallel Reaction Monitoring on a Full Scan QqTOF...

Recorded Webinars

- 16 other webinars + this one *Coming Soon!*
- Webinar #3 (2013)
 PRM Targeted Proteomics Using Full-Scan MS and
 Skyline
 Bruno Domon
- Webinar #9 (2015) PRM for PTM studies with Skyline Research-grade targeted proteomics assay development Jacob D. Jaffe

Interest Remains High

- Modern instruments support PRM well
 - High resolution, faster cycle times and full scheduling
- Viable alternative to SRM with triple quadrupole instrument
- Appealing not to need an extra instrument for targeted
- Registration for first PRM webinar (431) v 2014 DIA webinar (342)
- Registration for this PRM webinar (434) v 2017 DIA webinar (409)

Eduard Sabidó

Webinar

PRM theoretical concepts, benefits and instrument acquisition settings

Eduard Sabidó Cristina Chiva

CRG/UPF Proteomics Unit Barcelona, Spain

Universitat Pompeu Fabra Barcelona

Barcelona Biomedical Research Park

Eduard Sabidó

Cristina Chiva

"Targeted proteomics detects <u>proteins of interes</u>t with high sensitivity, quantitative accuracy and reproducibility"

"By delivering **precise**, **reproducible quantification** of <u>proteins of interest</u> in biological samples, targeted proteomics approaches are allowing researchers to apply the scientific method using mass spectrometry"

METHOD OF THE YEAR

NEWS FEATURE | SPECIAL FEATURE |

24 | VOL.10 NO.1 | JANUARY 2013 | NATURE METHODS

Α

PRM is a targeted proteomics workflow

Types of projects suited for targeted proteomics

Treatment A

Treatment B

C interactions

MS1 Targeted Methods

They rely on the mass of the <u>entire</u> molecule

MS2 Targeted Methods

They rely on the fragments of the molecule

Targeted Acquisition

They <u>only</u> acquire the molecules of interest

Targeted Data Analysis They acquire everything and later specific information is extracted

Viewpoint

What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry

Eva Borràs^{1,2} and Eduard Sabidó^{1,2,*} Issue – *Proteomics* 17, 17–18, 2017, 1700180

Parallel Reaction Monitoring (PRM)

Peterson, ..., Coon J, Mol Cell Proteomics. 2012 Nov; 11(11): 1475-1488 Gallien S, ..., Domon B, Mol Cell Proteomics. 2012 Dec; 11(12): 1709-1723

Parallel Reaction Monitoring (PRM)

Peterson, ..., Coon J, Mol Cell Proteomics. 2012 Nov; 11(11): 1475-1488 Gallien S, ..., Domon B, Mol Cell Proteomics. 2012 Dec; 11(12): 1709-1723

Parallel Reaction Monitoring (PRM)

co-elution identification

Selected Reaction Monitoring (SRM) is sequential (not parallel)

Ļ

High-resolution MS2 signal Full scan MS2

PRM is a targeted proteomics workflow

Mass spectrometry instruments

PRM in the Orbitrap Fusion Lumos

- 1. Precursor selection in quadrupole
 - Isolation window
- 2. Precursor fragmentation in collision cell
 - Fill time
 - Collision energy
- 3. Fragment ion detection in the Orbitrap
 - Resolving power

Making sure that the integrated signal corresponds to the targeted peptide

1. Co-elution of concurrent transitions

- 1. Co-elution of concurrent transitions
- 2. Sequence information / coverage

- 1. Co-elution of concurrent transitions
- 2. Sequence information / coverage
- 3. Reference MS2 spectra (libraries)

Making sure that the integrated signal corresponds to the targeted peptide

y8 - 910.5720+

y7 - 839.5349+

63

64

y6 - 742.4822+ y5 - 643.4137+ v4 - 514.3711+ y3 - 401.2871+ 1. Co-elution of concurrent transitions y7 - 420.2711++ 500 2. Sequence information / coverage 61.3 +1.3 ppm 400 3. Reference MS2 spectra (libraries) 4. Retention time information ntensity (10^3) 300 200 100 59.3 -4 ppm 0 58 62 57 59 60 61 **Retention Time**

Making sure that the integrated signal corresponds to the targeted peptide

m/z

- 1. Co-elution of concurrent transitions
- 2. Sequence information / coverage
- 3. Reference MS2 spectra (libraries)
- 4. Retention time information
- 5. Reference internal standard

Aim for a peptide quantification with high accuracy and precision

Aim for a peptide quantification with high accuracy and precision

8-10 points across chromatographic peak to define elution profile

Aim for a peptide quantification with high accuracy and precision

4 points across chromatography peak

Aim for a peptide quantification with high accuracy and precision

Calibration strategies with internal standards

1. Single-point calibration

1. External calibration curve

1. Reverse calibration curve

Webinar #13 (2016)

Calibrated Quantification with Skyline Chris Shuford

Aim for a peptide quantification with high accuracy and precision

Single-point calibration

We establish the calibration line with two points

- The response of the heavy internal standard
- The zero that is, zero response for zero concentration.

We assume a linear range response

Aim for a peptide quantification with high accuracy and precision

Single-point calibration

We establish the calibration line with two points

• The response of the heavy internal standard

• The zero — that is, zero response for zero concentration.

We assume a linear range response

Sensitivity and selectivity: a double boost for PRM PRM in the Orbitrap Fusion Lumos

- 1. Precursor selection in quadrupole
 - Isolation window
- 2. Precursor fragmentation in collision cell
 - Fill time
 - Collision energy
- 3. Fragment ion detection in the Orbitrap
 - Resolving power

Sensitivity and selectivity: a double boost for PRM PRM in the Orbitrap Fusion Lumos

- 1. Precursor selection in quadrupole
 - Isolation window
- 2. Precursor fragmentation in collision cell

SENSITIVITY

SELECTIVITY

- Fill time
- Collision energy
- 3. Fragment ion detection in the Orbitrap
 - Resolving power

Fill Time (120 ms) Transient length OT (30k 60ms)

les. at m/z 200	Transient length [ms]	Approx. scan speed [Hz]	"Free" fill time [ms]		
15,000	32	na	22		
30,000	64	15	54 118		
60,000	128	7.5			
120,000	256	4	246		
240,000	512	2	502		
450,000	1024	<1	1014		

Method Editor	Global Parameters	Scan Parameters	Summary						
Method Timeline		and the second sec				- 62			
Method Duration #		18.3	36.7	55	73.3	91.7	110		New
110								- Q	+ Delete
									Clear
Exp	eriment 1 Time Rang	ge 0-110	min						
Scans								Targeted MS ⁿ Scan Properti	ies
MS								MS ⁿ Level (n)	2
MS				6				Multiplex Ions	Г
				tMS ² OT	THCD			Isolation Mode	Quadrupole
Filters Precursor								Isolation Window (m/z)	1.4
Selection Range								Activation Tune	HCD
MIPS									
Intensity								HCD Collision Energy (%)	50
								Stepped Collision Energy	
Charge State								Detector Type	Orbitrap
Dynamic Exclusion								Orbitrap Resolution	Defined in Tabl
Targeted								III Mass Range	Normal
Targeted								🔢 Scan Range (m/z)	340-950
Exclusion								RF Lens (%)	30
Apex Detection								AGC Target	5.0e4
Triggers								Parallelizable Time	
Targeted Mass								(ms)	Defined in Tabl
Targeted Loss								III Microscans	1
Trigger								📰 Data Type	Centroid
Alternate Precursor Sorts								Polarity	Positive

Targeted MS ⁿ Scan Properties Show Favorites							
	MS ⁿ Level (n)	2	*	*			
	Multiplex Ions			*			
	Isolation Mode	Quadrupole	*	*			
	Isolation Window (m/z)	1.4		*			
	Activation Type	HCD	•	*			
	HCD Collision Energy (%)	30		*			
	Stepped Collision Energy						
	Detector Type	Orbitrap	•	*			
	Orbitrap Resolution	Defined in Table		*			
	Mass Range	Normal	+	*			
	Scan Range (m/z)	340-950		*			
	RF Lens (%)	30		*			
	AGC Target	5.0e4	\$	*			
	Inject Ions for All Available						
	Maximum Injection Time (ms)	Defined in Table		*			
	Microscans	1		*			
	Data Type	Centroid	•	*			
	Polarity	Positive	•	*			
	Source Fragmentation	Г		*			

Orbitrap Fusion Lumos Method Editor for PRM

									×
Mass List Table								Import Export 🕂 🗶	
	Compound	Formula	Adduct	m/z	z	t start (min)	t stop (min)	Orbitrap Resolution	Maximum Injection Time (ms)
• 1	IPGIIIAASAVR_light			590.8742	2	71.3	81.3	60000	118
2	IPGIIIAASAVR_heavy			595.8784	2	71.3	81.3	60000	118
3	FGLTTSR_light			391.2138	2	28.52	38.52	60000	118
4	FGLTTSR_heavy			396.2179	2	28.52	38.52	60000	118
5	LAALPNVYEVISK_light			708.9085	2	80.26	90.26	60000	118
6	LAALPNVYEVISK_heavy			712.9156	2	80.26	90.26	60000	118
7	ASGQAFELILSPR_light			694.8803	2	75.58	85.58	30000	54
8	ASGQAFELILSPR_heavy			699.8844	2	75.58	85.58	30000	54
9	ESVPEFPLSPPK_light			663.8506	2	68.26	78.26	30000	54
10	ESVPEFPLSPPK_heavy			667.8577	2	68.26	78.26	30000	54
11	SHEAEVLK_light			456.7429	2	4.98	14.98	60000	118
12	SHEAEVLK_heavy			460.75	2	4.98	14.98	60000	118
13	VADYIPQLAK_light			559.3162	2	56.85	66.85	60000	118
14	VADYIPQLAK_heavy			563.3233	2	56.85	66.85	60000	118
15	YAIAVNDLGTEYVHR_light			574.2933	3	59.83	69.83	120000	246
16	YAIAVNDLGTEYVHR_heavy			577.6294	3	59.83	69.83	120000	246
17	VLSPEAVR_light			435.7558	2	26.21	36.21	120000	246
18	VLSPEAVR_heavy			440.7599	2	26.21	36.21	120000	246
19	VLKPIQLTDPGK_light			436.9344	3	40.72	50.72	60000	118
20	VLKPIQLTDPGK_heavy			439.6058	3	40.72	50.72	60000	118 🗸

More PRM Webinars

Webinar #3 (2013)

PRM Targeted Proteomics Using Full-Scan MS and Skyline Bruno Domon

Webinar #9 (2015)

Research-grade targeted proteomics assay development: PRM for PTM studies with Skyline. Jacob D. Jaffe

Other webinars

https://skyline.ms/wiki/home/software/Skyline/page.view?name=webinars

PRM method development and step-by-step analysis of Lumos PRM data

PRM method development and step-by-step analysis of Lumos PRM data

31 peptides from 19 proteins related to the cell cycle of mouse fibroblasts

PRM method development and step-by-step analysis of Lumos PRM data

1. Setting up a Skyline document for PRM acquisition

2. Prepare and export the PRM method

3. PRM data analysis

PRM method development and step-by-step analysis of Lumos PRM data

EMBO Practical Course on Targeted Proteomics Barcelona, 11-16 November 2018

Registration Opens March 2018

Other courses

https://skyline.ms/project/home/software/Skyline/events/begin.view?

Learn More

- Webinar #18: TBD (coming soon)
- Weeklong Courses 2018
 - Buck Institute, Novato, CA April 2-6
 - NEU, Boston April 30 May 11
 - ETH, Zurich July 2-6
 - U. of Wa., Seattle July 30 August 3
 - New! Duke, Durham, NC September 17-24 ASMS, San Diego June 2&3
 - CRG, Barcelona November 12-16
 - Shanghai October 22-26

- Workshops and Conferences 2018
 - MSACL, Palm Springs January 20&21
 - pre-Lorne, Melbourne January 29-31
 - IIT Bombay, Mumbai February
 - US HUPO, Minneapolis March 10&11
- - User Group Meeting at ASMS, San Diego June 3
 - CNPEM, Campinas, Brazil November 7-9

Listings updated in **Join Us** section of Skyline homepage: https://skyline.ms/Skyline.url

Questions?

• Ask any questions at the following form:

https://skyline.ms/QA4Skyline.url

• Take the post-webinar survey:

https://skyline.ms/survey4webinar.url

1 Skyline Tutorial Webinar #17

This ends this Skyline Tutorial Webinar.

Please give us feedback on the webinar at the following survey:

https://skyline.ms/survey4webinar.url

A recording of today's meeting will be available shortly at the Skyline website.

We look forward to seeing you at a future Skyline Tutorial Webinar.