

DIA/SWATH -- primer and quantitative benchmarking

Skyline Webinar #18: DIA/SWATH Data Analysis in Skyline Revisited

Ben Collins

Queen's University Belfast | School of Biological Sciences

Outline

Primer on DIA/SWATH

Peptide centric or targeted data analysis

- Data set for the tutorial -- and where it came from
 - Inspired by LFQBench (Navarro et al. Nature Biotech 2016)

A brief history of data independent acquisition

A typical DIA/SWATH acquisition method

Tutorial paper – DIA/SWATH

Review

molecular systems biology

Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial

Christina Ludwig^{1,*,†}, Ludovic Gillet^{2,†}, George Rosenberger^{2,3}, Sabine Amon², Ben C Collins²

Outline

• Primer on DIA/SWATH

Peptide centric or targeted data analysis

- Data set for the tutorial -- and where it came from
 - Inspired by LFQBench (Navarro et al. Nature Biotech 2019)

Why Targeted analysis?

fragment ion spectrum 600-625 m/z

Peptide centric analysis (or targeted analysis)

Outline

• Primer on DIA/SWATH

Peptide centric or targeted data analysis

- Data set for the tutorial -- and where it came from
 - Inspired by LFQBench (Navarro et al. Nature Biotech 2019)

ETH Course Background

Strong relationship with lots of courses worldwide

Youtube 'Targeted Proteomics' Channel 80,000+ views

LFQBench study

ANALYSIS

A multicenter study benchmarks software tools for label-free proteome quantification

Pedro Navarro^{1,11}, Jörg Kuharev^{1,11}, Ludovic C Gillet², Oliver M Bernhardt³, Brendan MacLean⁴, Hannes L Röst², Stephen A Tate⁵, Chih-Chiang Tsou⁶, Lukas Reiter³, Ute Distler¹, George Rosenberger^{2,7}, Yasset Perez-Riverol⁸, Alexev I Nesvizhskii^{6,9}, Ruedi Aebersold^{2,10} & Stefan Tenzer¹

VOLUME 34 NUMBER 11 NOVEMBER 2016 NATURE BIOTECHNOLOGY

LFQBench study output

Some questions:

- 1. Are the quantitative ratios as expected?
- 2. Are there a lot of data points out of (species) position?

LFQBench style multispecies mixture proteome is now used frequently for benchmarking of new methods

diaPASEFMeier, F et al. *BioRxiv* (2020)

Data set for the webinar demo

3 x DIA technical replicates 1 hour gradient

+ 2 DDA files (1 of each condition)

6600 TripleTOF

or

Q-Exactive Plus

(A/B labelling is opposite from Navarro)

Backup

Motivation for DIA development

DDA / Discovery proteomics

Targeted (acquisition) proteomics

Data Independent Acquisition + "peptide-centric" Targeted Data Extraction

What is data independent acquisition?

- DIA term introduced by Venables J, et al. Nat Methods (2004)
- Explicitly <u>not</u> data dependent (no stochastic precursor selection)
- Features of DIA:
 - Fixed duty cycle deterministic (like SRM/PRM but unlike DDA)
 - Untargeted/unbiased data acquisition (like DDA but unlike SRM/PRM)
 - Comprehensive sampling of the precursor space with MS2 spectra
 - (Usually) Wide precursor isolation windows
 - (Usually) complex mixture MS2 spectra

Problem statement: DIA/SWATH produces highly complex mixture MS2 spectra

LFQBench style multispecies mixture proteome is now used frequently for benchmarking of new methods

Specter
Peckner, R et al. *Nature Methods* (2018)

Protein intensity, sample B (log₂)

diaPASEFMeier, F et al. *BioRxiv* (2020)

DIA-NNDemichev, V et al. *Nature Methods* (2020)