

Tutorial for the PNNL Biodiversity Library Skyline Plugin

Developed By: Michael Degan, Grant Fujimoto, Lillian Ryadinskiy, Samuel H Payne

Contact Information: Samuel Payne (<u>Samuel.Payne@pnnl.gov</u>) Michael Degan (<u>Michael.Degan@pnnl.gov</u>) Grant Fujimoto (<u>Grant.Fujimoto@pnnl.gov</u>)

This tutorial is to help users install and use the PNNL Biodiversity Library plugin with Skyline. Troubleshooting help will follow at the end of the tutorial. We note that this plugin does not work with Windows XP and must be used with Skyline version 3.1.1.7490 or greater. For information about the Skyline program, including how to download, please visit

<u>https://skyline.gs.washington.edu/labkey/project/home/begin.view</u>? Further information about the Biodiversity Library available at: http://omics.pnl.gov/project-data/biodiversity-library

Program Goal

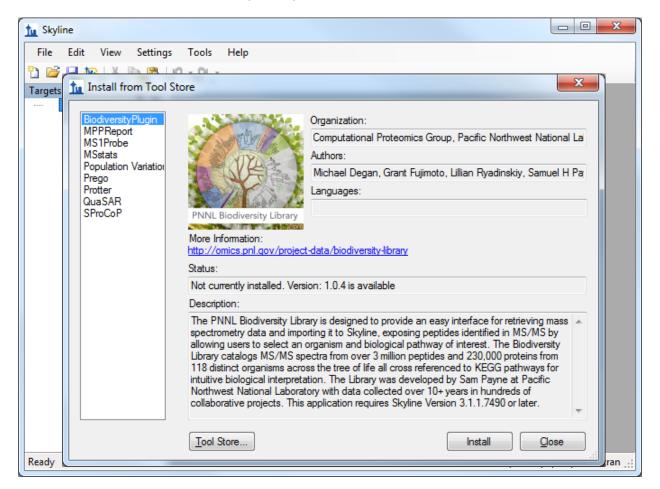

The goal of the plug-in is to help users browse the large spectral libraries from the PNNL Biodiversity Library and import relevant data into Skyline. Additional functionality allows users to import their own data into the plugin for easy navigation and loading into Skyline.

Table of Contents

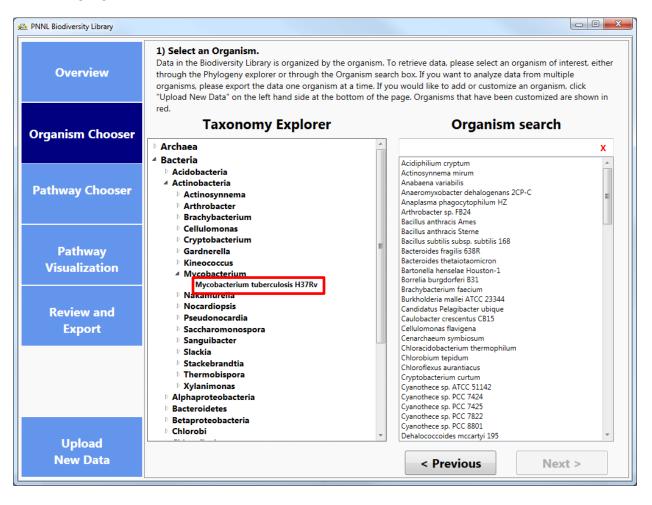
Program Goal	1
Installation	3
Running the Plugin	4
Select an Organism	5
Select Pathways of Interest	6
Select proteins of interest through KEGG Pathway maps	7
Review and export	8
Export data to Skyline:	9
View spectral data in Skyline	10
Customizing the plugin with your data	11
Input Mass Spec Data	
Customizing Options	
Selecting an Organism	
Reviewing and Confirming	16
Settings in Skyline	19
Troubleshooting	20

Installation:

The PNNL Biodiversity Library Plugin for Skyline can be installed through the Skyline tool store interface. Tools -> Tool Store -> PNNL Biodiversity Library

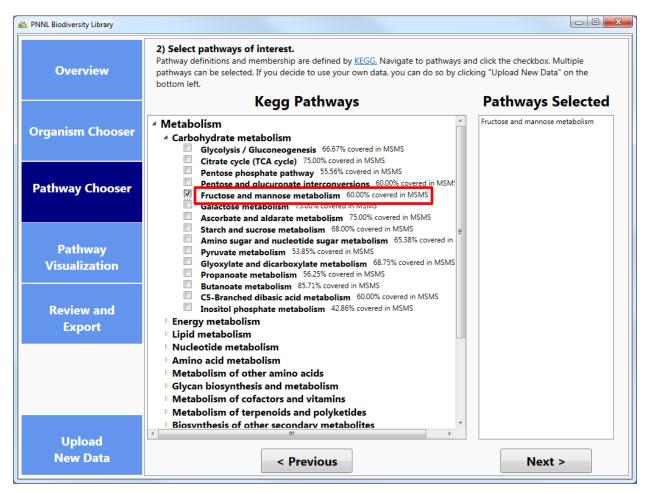
Running the Plugin:

🚵 PNNL Biodiversity Library	
Overview	
Organism Chooser	
Pathway Chooser	PNNL Biodiversity Library
Pathway Visualization	The PNNL Biodiversity Library is designed to provide an easy interface for retrieving mass spectrometry data. This data can be exported into Skyline to assist in SRM assay design or DIA data analysis. The tool exposes peptides identified in MS/MS by allowing users to select an organism and biological pathway of interest. In total the Biodiversity Library catalogs MS/MS spectra from 3 million peptides and 230,000 proteins from 118
Review and Export	distinct organisms across the tree of life. All proteins are cross referenced to KEGG pathways for intuitive biological interpretation. The Library was developed by Sam Payne at <u>Pacific Northwest National Laboratory</u> with data collected over 10+ years in hundreds of collaborative projects. The wizard helps users browse data using the following steps. Users can upload new data into the plugin by
	clicking "Upload New Data" on the left hand side at the bottom of the page. 1) Select an Organism. 2) Select pathways of interest. 3) View pathways and curate proteins. 4) Review and export data to Skyline. PNNL Biodiversity Plugin Version: 1.0.4
Upload New Data	Database Source: <u>Biodiversity Library v2.1.230</u> Thursday, March 31, 2016 Funding: US DOE, <u>Biological and Environmental Research</u> Contact: <u>Samuel Payne</u> U.S. DEPARTMENT OF ENERGY Next >


The plug-in is a wizard that walks users through the process of importing data into Skyline.

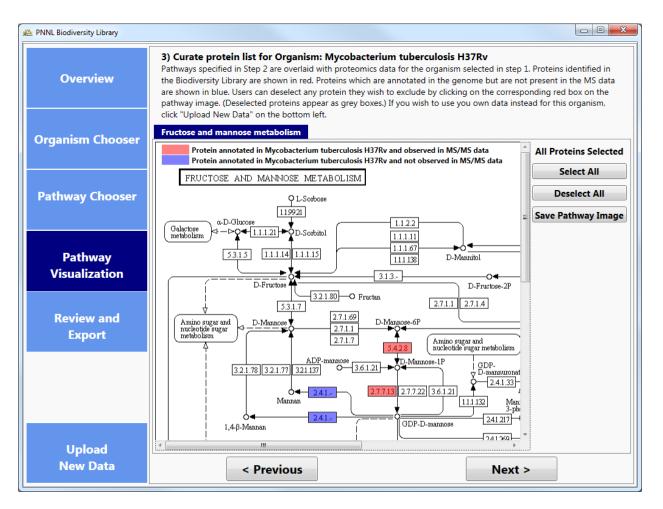
Select an Organism:

You are able to select your desired organisms in one of two ways, either through the Taxonomy Explorer or by directly searching for the organism by name.


The Taxonomy Explorer organizes organisms through scientific naming convention, i.e. Kingdom, Phylum, Class and then individual strain of the organism. Human data is additionally broken down by tissue.

The Organism search (right panel) allows for users to type in a name and auto-filters the dataset to matching organisms.

Select Pathways of Interest:


After you have selected an organism, you then choose the KEGG pathways you are interested in investigating. The coverage metric is dynamically calculated for each Organism/Pathway combination and shows the percentage of proteins in a pathway for which the Library contains proteomic data. You can select as many pathways as you desire.

Select proteins of interest through KEGG Pathway maps:

The images for the pathways you selected will be created dynamically, highlighting all the KEGG orthologs for the organism in the pathway. If that protein has been observed in the spectral library, it will be highlighted initially as red; unobserved proteins are highlighted in blue. From here, you can select the proteins which are of interest to you in the pathway in two ways, either by clicking on individual boxes or by clicking the select/deselect all buttons on the right hand side of the screen. If an ortholog does become deselected it will then be highlighted as grey to show that the information will not be pushed to the next step of the process.

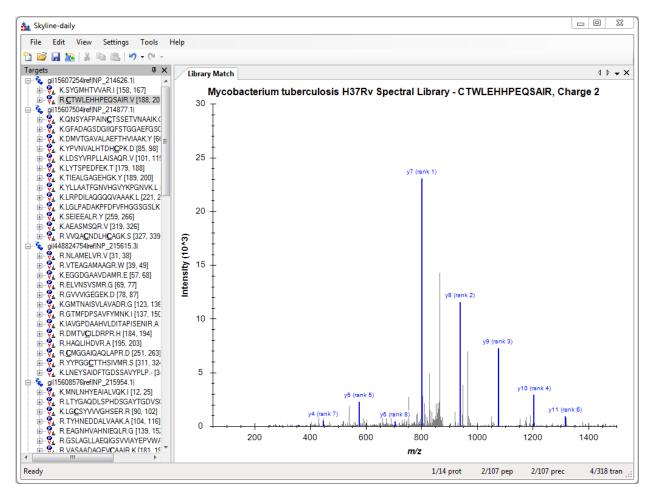
Additionally, you can save the pathway image by clicking the button on the right-hand side of the screen, below the Deselect All button. This will save the image for the pathway along with your current selection of orthologs as a .png file with a resolution of 300 dpi.

Review and export:

On the Review and Export tab, the application will display the total number of genes selected from all of your Organism/Pathway combinations as well as an individual breakdown of the proteins. If there are Organism/Pathway combinations you are no longer interested in, or individual proteins which you do not wish to export to Skyline, you can uncheck the box for the row(s).

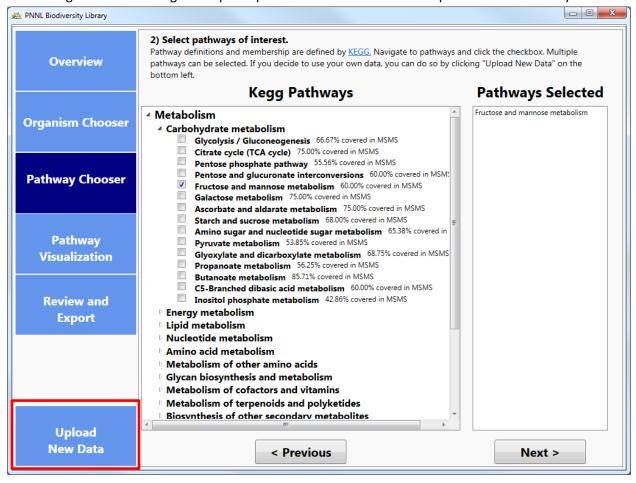
Overview	From this fi relevant da	-	o Skyline. ss for each organism and pathway are o Skyline. This includes a FASTA file for	, <u>,</u>	
	Organis	m	Pathway	# of Genes	Export?
rganism Chooser	Mycobact	erium tuberculosis H37	7R Fructose and mannose metabolism	10	
Pathway Chooser Pathway	Pathwa Genes (10	y: Fructose and n	ım tuberculosis H37Rv nannose metabolism Protein name		
Visualization	1	O53634 c	aca: GDP-mannose 4.6-dehydratase		
Visualization			aca: GDP-mannose 4.6-dehydratase JIpX; fructose 1,6-bisphosphatase		
Visualization	V	P9WN21 c P9WG43 t	JIpX; fructose 1,6-bisphosphatase pi; triosephosphate isomerase		
Visualization Review and		P9WN21 c P9WG43 t P71790 c	IpX; fructose 1,6-bisphosphatase	SmdA	
Review and		P9WN21 c P9WG43 t P71790 c	JIpX; fructose 1,6-bisphosphatase pi; triosephosphate isomerase		
		P9WN21 c P9WG43 t P71790 c P71791 e P9WKD7 r	IPX: fructose 1,6-bisphosphatase pi: triosephosphate isomerase gmdA: GDP-D-mannose dehydratase C epiA: nucleotide-sugar epimerase EpiA piB: ribose-5-phosphate isomerase B		
Review and	V V V V V	P9WN21 c P9WG43 t P71790 c P71791 e P9WKD7 r O05898 r	IPX: fructose 1,6-bisphosphatase pi: triosephosphate isomerase gmdA: GDP-D-mannose dehydratase C epiA: nucleotide-sugar epimerase EpiA		
Review and	 	P9WN21 c P9WG43 t P71790 c P71791 e P9WKD7 r O05898 r O86374 p	IPX: fructose 1.6-bisphosphatase pi; triosephosphate isomerase gmdA: GDP-D-mannose dehydratase C epiA: nucleotide-sugar epimerase EpiA piB: ribose-5-phosphate isomerase B manA: mannose-6-phosphate isomera pmmA; phosphomannomutase PmmA	5e	
Review and	× × × × × ×	P9WN21 c P9WG43 t P71790 c P71791 e P9WKD7 r O05898 r O86374 p L7N6A5 r	IPX: fructose 1.6-bisphosphatase pi; triosephosphate isomerase gmdA; GDP-D-mannose dehydratase (epiA; nucleotide-sugar epimerase EpiA piB; ribose-5-phosphate isomerase B nanA; mannose-6-phosphate isomera mmA; phosphomannomutase PmmA nanB; D-alpha-D-mannose-1-phospha	5e	
Review and	 	P9WN21 c P9WG43 t P71790 c P71791 e P9WKD7 r O05898 r O86374 p L7N6A5 r	IPX: fructose 1.6-bisphosphatase pi; triosephosphate isomerase gmdA: GDP-D-mannose dehydratase C epiA: nucleotide-sugar epimerase EpiA piB: ribose-5-phosphate isomerase B manA: mannose-6-phosphate isomera pmmA; phosphomannomutase PmmA	5e	

Export data to Skyline:


Once you are satisfied with your selection, you can then either select another organism and repeat the wizard steps, or export the data to Skyline.

Once you confirm the export to skyline, the application will create a FASTA for the proteins you indicated and download the Spectral Library files for the organisms of interest from the Biodiversity Library's Repository on MassIVE (<u>ftp://massive.ucsd.edu/MSV000079053/library/</u>). Both of these files (FASTA and Bibliospec library) are then imported to Skyline.

Overview	From this fi relevant da	inal tab, a table o	Hata to Skyline. If genes for each organism and pathw rred to Skyline. This includes a FASTA ary.		2 · · · ·
	Organis	m	Pathway	# of Genes	Export?
anism Chooser	Mycobact	terium tuberculos	sis H37R Fructose and mannose meta	abolism 10	V
hway Chooser					
	-	y: Fructose a	terium tuberculosis H37Rv and mannose metabolism	,	
Pathway	Pathwa Genes (10	y: Fructose a		,	
athway	Pathwa Genes (10	y: Fructose a	and mannose metabolism		
Pathway	Pathway Genes (10 Export?	y: Fructose a)) Accession	nd mannose metabolism Protein name	itase	
	Pathway Genes (10 Export?	y: Fructose a) Accession 053634	Protein name gca; GDP-mannose 4,6-dehydra	itase	
athway ualization	Pathway Genes (10 Export? V	y: Fructose a h Accession O53634 P9WN21	Protein name gca: GDP-mannose 4,6-dehydra glpX: fructose 1,6-bisphosphata	itase se	
athway ualization view and	Pathway Genes (10 Export? V	y: Fructose a Accession 053634 P9WN21 P9WG43	Protein name gca: GDP-mannose 4,6-dehydra glpX: fructose 1,6-bisphosphata tpi; triosephosphate isomerase	itase ise ratase GmdA	
athway Ialization	Pathway Genes (10 Export? V V V V V	y: Fructose a Accession O53634 P9WN21 P9WG43 P71790	Protein name gca: GDP-mannose 4,6-dehydra glpX: fructose 1,6-bisphosphata tpi: triosephosphate isomerase gmdA; GDP-D-mannose dehydr	itase ise ratase GmdA se EpiA	
thway alization iew and	Pathway Genes (10 Export? V V V V V V V V V V V V V V V V	y: Fructose a Accession O53634 P9WN21 P9WG43 P71790 P71791	Protein name gca: GDP-mannose 4,6-dehydra glpX: fructose 1,6-bisphosphata tpi: triosephosphate isomerase gmdA: GDP-D-mannose dehydr epiA; nucleotide-sugar epimera	itase ise ratase GmdA se EpiA rase B	
thway alization iew and	Pathway Genes (10 Export? V V V V V V V V V V V V V V V V V V V	y: Fructose a Accession O53634 P9WN21 P9WG43 P71790 P71791 P9WKD7	Protein name gca: GDP-mannose 4,6-dehydra glpX: fructose 1,6-bisphosphata tpi: triosephosphate isomerase gmdA: GDP-D-mannose dehydr epiA: nucleotide-sugar epimera rpiB; ribose-5-phosphate isome	itase ise ratase GmdA se EpiA rase B somerase	
athway Jalization	Pathway Genes (10 Export? V V V V V V V V V V V V V V V V	y: Fructose a Accession O53634 P9WN21 P9WG43 P71790 P71791 P9WKD7 O05898	Protein name gca: GDP-mannose 4,6-dehydra glpX: fructose 1,6-bisphosphata tpi: triosephosphate isomerase gmdA: GDP-D-mannose dehydr epiA: nucleotide-sugar epimera rpiB: ribose-5-phosphate isome manA: mannose-6-phosphate is pmmA: phosphomannomutase	itase ise ratase GmdA se EpiA rase B somerase	anB


View spectral data in Skyline:

The plugin will automatically propagate the information downloaded into Skyline, where it uses your peptide settings to create peptides for proteins in the FASTA and uses the Spectral Library downloaded through the plugin to perform library matching.

Customizing the plugin with your data:

The Biodiversity Plugin enables users to update the MS/MS data to include personal data and use the same pathway oriented interface to load their data directly into Skyline. Users start customizing their data by selecting the **Upload New Data** button at the bottom left of the window. This starts a new wizard to guide users through the upload process. Users can choose to upload new data at any time.

Input Mass Spec Data:

Customize Data for Biodiversity Li	brary 🗖 🗖 💌
Welcome	1. Input Mass Spectrometry Data To load data into the plugin, we require the annotated spectrum (in a spectrum library).
Input MS/MS Data	Libraries must be in the Bibliospec (.blib) format. Details and assistance on generating a blib can be found under the help button.
Customizing Options	.blib File Location
Review and Confirm	
	< Previous Next >

Only one file is required, a <u>Bibliospec formatted</u> spectral library. Please consult the <u>online</u> <u>documentation</u> for details about building a Bibliospec library. To build a library from mzldentML results, and example command line is:

~> BlibBuild.exe -c 0.9999 E:\path\to\PSM_results.mzid E:\path\to\Library.blib

It is then necessary to filter the Blib file to contain ONE and only one PSM per peptide. Therefore, you must filter the above library file, for example:

~> BlibFilter.exe -b 1 E:\path\to\Library.blib E:\path\to\FilteredLibrary.blib

Customizing Options:

There are four options for updating organism data:

- Replace the existing organism entirely with custom data.
- Supplement an existing organism with additional data.
- Add a new tissue to an organism that is already in the database.
- Add a new organism that does not yet exist in the current database.

Customize Data for Biodiversity Li	brary	
Welcome		ptions ed to the plugin in there different ways. Click an option and the selection box below. Details and assistance can be found
Input MS/MS Data	under the help button. Organisi	ms that have already been customized will appear in red. Replace an organism's data entirely with custom data.
Customizing Options	Supplement Add tissue to existing	Supplement an existing organism with custom data. Add a new tissue to human data.
Review and Confirm	Add New	Add a new organism that does not yet exist in the current database.
		X
0	< Previous	Next >

Selecting an Organism:

Once the customizing option has been selected, the list box at the bottom of the window will populate with organisms to search and choose from.

Customize Data for Biodiversity L	ibrary	
Welcome		ptions ed to the plugin in there different ways. Click an option and the selection box below. Details and assistance can be found
Input MS/MS Data	_	Replace an organism's data entirely with custom data.
Customizing	Supplement	Supplement an existing organism with custom data.
Options	Add tissue to existing	Add a new tissue to human data.
Review and Confirm	Add New	Add a new organism that does not yet exist in the current database.
2	Acidiphilium cryptum Actinosynnema mirum Anabaena variabilis Anaeromyxobacter dehalogenans 2CP-C Anaplasma phagocytophilum HZ Arthrobacter sp. FB24 Bacillus anthracis Ames Bacillus anthracis Sterne Bacillus anthracis Sterne Bacillus anthracis Sterne Bacillus anthracis Gase Bacteroides fragilis 6388 Bacteroides fragilis 6388 Bacteroides thetaiotaomicron	X T Next >

Once you have selected an organism, the next button will enable. Once you click the **Next** button, the wizard will begin collecting the results. Users will be navigated to the Review and Confirm tab where they will wait for their results to appear.

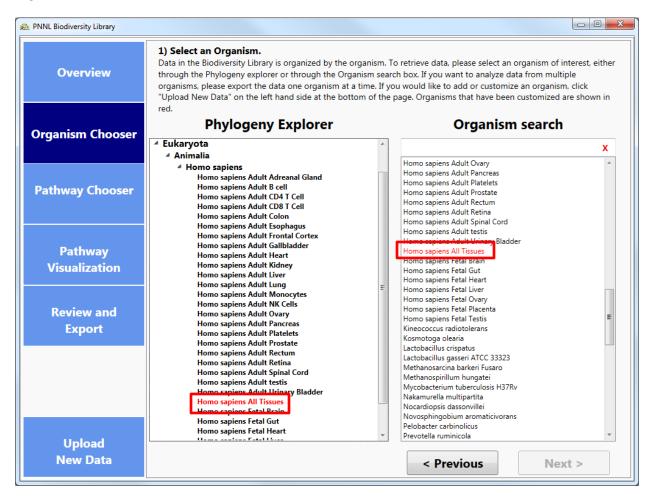
Users also have the option of adding a new tissue to the human data. To add new tissue, click the **Add tissue to existing** button and then select the organism that you would like to add new tissue to. Currently, the plugin has the capability of adding tissue only to Home Sapiens. After you have selected the organism and click **Next**, the following window will appear.

TissueNameSelectorView	
Please select an identifier for without the organism's name	
Accept	Cancel

Here, users will be prompted to enter a name for the tissue. The named you enter will automatically be appended to the name of the organism you are adding tissue for. For example, if you entered "Hippocampus" as the tissue name, the full name will be Home Sapiens Hippocampus.

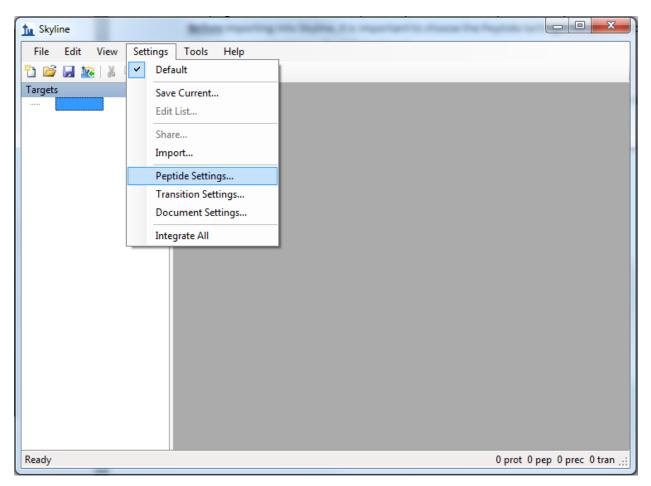
Once you click **Accept**, the wizard will begin collecting the results. Users will be navigated to the Review and Confirm tab where they will wait for their results to appear.

Reviewing and Confirming:


Once the results have been collected, a message will appear prompting you to confirm the results and finish the process by clicking the **Finish** button, cancel the process by clicking the **Cancel** button, or go back and modify your customizing options by clicking the **Previous** button.

Customize Data for Biodiversity L	ibrary
Welcome	3. Review and Confirm Data We parsed your .blib and found 1636 peptides from 859 proteins for organism Homo
Input MS/MS Data	sapiens All Tissues (213 proteins mapped to KEGG pathways). The plugin currently has 2659 proteins mapped to KEGG pathways for this organism. Your data has 37 proteins that are not currently in the database. Your selected option to supplement will combine the observed proteins from the plugin with the observed proteins found in your data.
Customizing Options	To go back and make changes to the customizing options, click the Previous button. To confirm these changes, click the Finish button. To cancel, click the Cancel button. After confirming your changes, you will be redirected to the Overview tab. Uploading new
Review and Confirm	data causes a refresh of the database, requiring you to start from the beginning.
2	< Previous Finish Cancel

Please note: Adding a new organism can take longer than Replacing or Supplementing. If the process takes longer than expected, a message (shown below) will appear, allowing you to wait there until the results are collected.


Customize Data for Biodiversity Li	brary	
Welcome	3. Review and Confirm Data Collecting results. Please wait, this could take a few minutes.	
Input Mass Spec Data		
Customizing Options		
Review and Confirm		
0	< Previous Finish Canc	el

For your convenience, any organism that was customized by you will appear in red. Unmodified organisms will remain black.

Settings in Skyline

The plug-in creates a FASTA of the proteins you choose and imports that sequence file into Skyline. <u>Before</u> importing into Skyline, it is important to choose the Peptide Settings that you wish to use for your document (Settings > Peptide Settings).

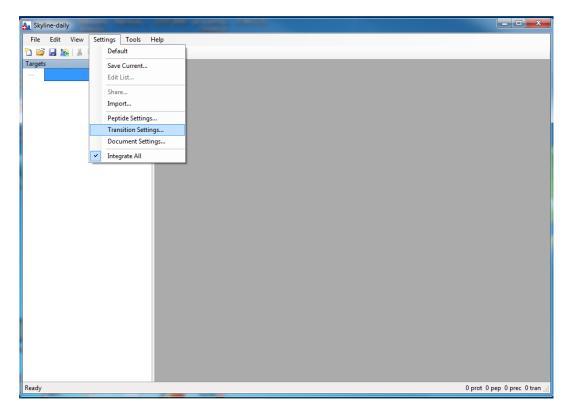
After the FASTA has been imported, users will not be able to make changes in Digestion, Filter or Modifications tabs.

Additionally, it is recommended to set Transition Settings before importing the FASTA. Be sure to select precursor charge states (in the Filter Tab).

Troubleshooting

- The application is taking an unusually long time while generating a FASTA from my selection of proteins.
 - Depending on your Skyline settings, Skyline could be seeing that there are proteins incoming from this FASTA which do not contain peptides according to the current filter settings. While this window is open from Skyline, our application is waiting for a response. To allow the information to be fully exported, select "Keep" so that the proteins will export and the .blib file(s) which download afterwards will provide a library match and populate the peptides for these new proteins.
- No proteins appeared as red in the KEGG pathway maps.
 - This could be due to two possibilities:
 - The organism contains proteins which should be observed in MS/MS space on this pathway, but were not observed in experimental results. These ortholog boxes will still be highlighted as blue.
 - The organism does not contain proteins which should be observed in MS/MS space on this pathway. In this case, no ortholog boxes will be highlighted on the image at all.
- Spectral Library doesn't download.
 - Due to the server based location of the Spectral libraries, our application does require a stable internet connection to acquire these files. If you have confirmed that your internet connection is stable, the issue is most likely due to the repository on MassIVE being inaccessible. Please contact either ccms-web@proteomics.ucsd.edu or stable or stable
- No proteins were downloaded from NCBI.
 - Due to the application creating FASTA information dynamically based on protein selection, our application does require a stable internet connection to acquire these files from NCBI at runtime. If you have confirmed that your internet connection is stable, the issue is most likely due to an issue with NCBI's FTP connection. Please send an email directly to info@ncbi.nlm.nih.gov for further assistance with their FTP connection.
- My favorite protein was not found or exported to Skyline.
 - There are a number of reasons why a specific protein was not pushed into skyline.
 - Skyline peptide settings (missed cleavages)
 - Protein not observed in spectral library
 - To add custom observed data, see the *Customizing the plugin with your data* section of the tutorial
 - Protein is not functionally classified by KEGG
 - To manually insert new protein:
 - File -> Insert -> FASTA and copy your FASTA snippet in (Skyline will automatically populate the protein with peptides based on your digestion settings)
 - Edit -> Insert -> Proteins and fill out the table.
 - To manually insert a peptide go to Edit -> Insert -> Peptides and fill out the table.
- No proteins were imported into Skyline
 - This could be due to two possibilities:
 - The plugin was unable to obtain FASTA information for all proteins selected for export. NCBI or your local computer may be experiencing connectivity issues.

- No proteins were selected for export from the plugin. The Spectral Library for the organism(s) examined still should export, but a message will display informing you that no proteins were selected and thus no FASTA was created
- Error Messages:
 - When the Biodiversity Plugin encounters an error, the user is prompted with the option to send an error report. We highly encourage all users who encounter problems to send the error report along with a description of what lead up to the failure. These messages allow our developers to emulate the failure state so the problem can be diagnosed and fixed. We will try to address issues as soon as possible.
 - My version of Skyline is out of date.
 - Our application requires Skyline to be version 3.1.1.7490 or later. To update to the most recent version, please go to <u>Skyline Daily's webpage</u> to download the latest version of Skyline.
 - \circ $\;$ Unable to establish connection to NCBI to acquire FASTA for your organisms.
 - The plugin queries NCBI in real time and requires a stable internet connection.
 NCBI or your local computer may be experiencing connectivity issues.
 - MassIVE Server Unreachable
 - The plugin downloads the spectral library files from the UCSD MassIVE FTP server and requires a stable internet connection. MassIVE or your local computer may be experiencing connectivity issues.
- How do I add my data to the Biodiversity Library?
 - The Biodiversity Library is curated by Samuel Payne at Pacific Northwest National Laboratory. For more information about your data being visible in the Library, please contact <u>Samuel.Payne@pnnl.gov</u>.
- Observed protein count is zero when customizing data.
 - This could be due to two possibilities:
 - The organism you selected to update doesn't match the organism that was used in your results
 - The identifiers in your data are not Uniprot identifiers (e.g. RefSeq, Genbank, GI numbers)
 - The organism you selected does not use Uniprot as identifiers in KEGG


Biodiversity Plugin for DIA Data Analysis

Usage of the Biodiversity Plugin for hypothesis-driven DIA data analysis proceeds in a manner very similar to that which is described for SRM/PRM method development. However, several additional steps, common in the analysis of DIA data, are recommended. If you are unfamiliar with the analysis of DIA data in Skyline, you are encouraged to consult the webinar and tutorial for Data Independent Analysis, which can be found at Please consult the Data Independent Acquisition tutorial on the Skyline website. The tutorial and webinar can be found at

https://skyline.gs.washington.edu/labkey/wiki/home/software/Skyline/page.view?name=tutorial_dia.

To analyze DIA data using the Biodiversity Plugin:

- Start Skyline. If you have not already done so, install the PNNL Biodiversity Library Plugin for Skyline through the Skyline tools store interface (Tools --> Tool Store --> Biodiversity Plugin. See p. 3 of the Biodiversity Plugin Tutorial.
- 2. Within Skyline, choose the Peptide Settings you wish to use for your document (Settings --> Peptide Settings). After the FASTA file has been imported, you will not be able to make changes in Digestion, Filter, or Modifications tabs (see p. 18 of this Tutorial). On the Library tab, ensure that no spectral libraries are selected. A new library, designed for your experiment, will be generated by the Biodiversity Plugin.
- 3. Choose the appropriate Transition Settings for your DIA experiment (Settings --> Transition Settings).

a. In the Filter tab, set desired precursor and ion charges, and also select ion types (p, b, y for precursor, b ions, y ions) as desired. Select desired mass range and rules for in designated area for Product ions.

Transition Settings
Prediction Filter Library Instrument Full-Scan
Precursor charges:Ion charges:Ion types:2, 3, 41, 2p, b, y
Product ions
From: T₀: m/z > precursor Iast ion
Special ions: V N4eminal to Proline C4eminal to Glu or Asp iTRAQ-114 iTRAQ-115 iTRAQ-116 iTRAQ-116 iTRAQ-117 TMT-126 TMT-127L Precursor m/z exclusion window: m/z
Auto-select all matching transitions
OK Cancel

- b. In the Library tab, make sure that ion match tolerance is set at a value that is appropriate for your data files.
- c. In the Instrument tab, make sure that the mass range (Min m/z and Max m/z) match the data acquisition range for your data files and that the Method match tolerance is appropriate for your instrument and acquisition settings.
- d. In the Full-Scan tab, in the MS1 filtering area, set Isotope peaks included to Count with 3 peaks. Settings for Precursor mass analyzer and Resolving power should be appropriate for the instrument used for data acquisition (either Orbitrap or TOF).
- e. In the Full-Scan tab, in the MS/MS filtering area, set the Acquisition method to DIA and select the appropriate product mass analyzer (either Orbitrap or TOF). Generate an isolation scheme that matches what was used in data acquisition. This step is extremely important; data will not import correctly if the Isolation Scheme is not correct. Once these steps are completed, the Full-Scan tab should look something like this:

Transition Settings
Prediction Filter Library Instrument Full-Scan
MS1 filtering Isotope peaks included: Precursor mass analyzer: Count ▼
Pea <u>k</u> s: Res <u>g</u> lving power: 3 35,000
Isotope la <u>b</u> eling enrichment: Default
M <u>S</u> /MS filtering A <u>c</u> quisition method: Product <u>m</u> ass analyzer: DIA ▼ TOF ▼
Isolation scheme: Resglving power: WUSTL-SWATH ▼ 17,000
Retention time filtering Image: Use only scans within 5 Image: Use only scans within 5 Image: Use only scans within 5 Image: Use only scans within 5
OK Cancel

4. Start the Biodiversity Plugin (Tools --> Biodiversity Plugin).

🛃 Skyline-daily				
File Edit View Settings	Тос	ols Help		
🛅 🚅 🛃 💽 👗 🖷 🖺 🖻		SRM Collider		
Targets		MPPReport		
		Population Variation		
		Protter		
		MS1 Probe		
	0	Biodiversity Plugin_test		
		MSstats •		
		Biodiversity Plugin		
c .		Updates		
F		Tool Store		
		External Tools		
		Immediate Window		
		Options		
	_			
Ready			0 prot 0 pe	p 0 prec 0 tran 🖽

- 5. For processing of DIA experiments, it is highly recommended that you upload a local spectral library in order to have accurate retention time information for your particular LC-MS system. See pp. 11-17 of this Tutorial for instructions.
- 6. Choose desired organism (created with data upload) and KEGG pathway, export .fasta file to Skyline as described in pp. 5-10 of this Tutorial.
- 7. Import DIA data files into Skyline and proceed with analysis. If additional details are needed, please see the Skyline Data Independent Acquisition tutorial and webinar.