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Figure 2: Collision energy (CE) optimization chromatogram for the doubly charged peptide VLVLDTDYK at m/z 533.3. The 
colored lines correspond to the Total Ion Current (TIC) for the sum of  four transitions (533.3>853.4, 754.4, 641.3 and 526.2) at
eleven different voltage steps. The red trace corresponds to the CE value calculated using the instrument default equation (TSQ 

Ultra, Thermo Fisher Scientific, See Table 1); the positive-value steps represent 1V increments above the red line CE value and the 
negative-value steps represent 1V decrements.

Figure 3: Reproducibility of  the measurement of  the relative peak areas under the TIC chromatograms for ten replicate 
analyses for the doubly charged peptide VLVLDTDYK. The areas obtained at each voltage step were normalized within each 
replicate relative to the peak area values obtained at the reference voltage setting (red bar, 100%) calculated using the default 

CE equation (TSQ Ultra, Thermo Fisher Scientific).

Figure 3: Concentration dependence of  the peak area measurement reproducibility for peptide YLGYLEQLLR under the same 
conditions described in Figure 2. Varying on-column amounts of  peptide YLGYLEQLLR were injected (12 - 200 fmol). 

Reproducible area measurements were observed at 50 fmol on-column or above.

Figure 1: Workflow for the experimental collision energy optimization using Skyline.  
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Collision Energy Regression Charge 2

slope = 0.0340, intercept = 3.3140

slope = 0.0364, intercept = 0.9539
r = 0.91
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Collision Energy Regression Charge 3

slope = 0.0440, intercept = 3.3140

slope = 0.0374, intercept = 3.1859
r = 0.97
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Outline:

Proteomics experiments based on Selected Reaction Monitoring (SRM, also referred to as

Multiple Reaction Monitoring or MRM) are being used to target large numbers of protein candidates in

complex mixtures. At present, instrument parameters are often optimized for each peptide, a time and

resource intensive process. Large SRM experiments are greatly facilitated by having the ability to predict

MS instrument parameters that work well with the broad diversity of peptides they target. For this reason,

we :

� investigated the impact of using simple linear equations to predict the collision energy (CE) on peptide

signal intensity and compared it with the empirical optimization of the CE for each peptide and transition

individually;

� report a fully automated workflow for optimized method development, compatible with MS platforms

from Agilent (pending a software patch), Applied Biosystems, Waters and Thermo Fisher Scientific. This

workflow has been implemented in version 0.6 of the open source Skyline software

(http://proteome.gs.washington.edu/software/skyline).

Methods:

The data were acquired at two sites (University of Washington and The Broad Institute).

Sample: Tryptic digest of six bovine proteins purchased from Michrom (PN: PTD/00006/63)

Collision Energy optimization replicates: the sample was reconstituted and diluted to 50 fmol/µl

(or 100 fmol/µl for the 4000 Q Trap) using 97 % Water, 3 % Acetonitrile, and 0.1 % Formic Acid. 2 µl of
the digest was injected into the LC system (100 fmol on column) for data acquisition.

Dilution analysis: the sample was initially reconstituted to 200 fmols/µl using the same buffer

and diluted to produce the following concentrations: 6.25 fmols/µl, 12.5 fmols/µl, 25 fmols/µl, 50

fmols/µl, 75 fmols/µl and 100 fmols/µl. A 2 µl aliquot of each sample was injected on column for data
acquisition.

Skyline method set up for collision energy optimization

Data Acquisition Cycle 1:

�20 doubly charged and 10 triply charged peptides using 4 transitions per precursor ion.
Data Acquisition Cycle 2:

�Scheduling time windows of 4 or 5 min and maximum number of 132 or 110 allowable concurrent measurements.
�4 or 5 scheduled methods, depending on LC gradient conditions and system capabilities.
�Collision energy optimization parameters were set to use 5 steps on either side of the value predicted by the default
equation (Table 1), with the step size set to 1 V. In total, 11 collision energy voltage values were considered for each
fragment ion, yielding 1320 transitions per replicate.
�Consecutive mass variations of one hundredth of a mass unit were used for each fragment ion as a vendor-neutral
method of allowing software tools like Skyline to specify and recognize variation in secondary parameters like CE. The true
product m/z was assigned to the CE for the default equation, with no other product m/z value varying more than 5
hundredths from that.
Differential Experiment:

Using a single set of measurements for each transition and CE values (4000 Q-trap) from step 2, two unscheduled methods
were generated: i) Values predicted by linear equations calculated from all precursors; ii) Values that produced the maximum
area for each transition. (Methods run in randomized order over 8 replicates).

Starting Linear Equations for Predicting Peptide CE

(Default equations)

TSQ Ultra

TSQ Vantage

CE=0.034*m/z + 3.314 CE=0.044*m/z + 3.314

4000 Q Trap CE=0.043*m/z +  4.756 CE=0.043*m/z +  4.756

Calculated Linear Equations

TSQ Ultra 

1.0 mTorr

CE=0.055±0.02*m/z +

-8.01±11.5 (n = 18)

CE=0.027±0.022*m/z + 

4.492±10.379 (n = 9)

TSQ Ultra 

1.5 mTorr

CE=0.036±0.008*m/z + 

0.954±4.818 (n = 18)

CE=0.037±0.007*m/z + 

3.525±3.384 (n = 9)

TSQ Vantage 

1.0 mTorr

CE=0.041±0.01*m/z +

-3.442±5.765 (n = 18)

CE=0.04±0.005*m/z + 

0.773±2.214 (n = 9)

TSQ Vantage 

1.5 mTorr

CE=0.03±0.005*m/z + 

2.905±3.151 (n = 18)

CE=0.038±0.004*m/z + 

2.281±1.808 (n = 9)

TSQ Access 

1.0 mTorr

CE=0.049±0.009*m/z +

-5.75±5.428 (n = 16)

CE=0.039±0.012*m/z + 

3.314±5.835 (n = 7)

4000 Q Trap

(Instrument A)

CE=0.052±0.008*m/z +

-2.919±5.514 (n = 13)

CE=0.036±0.008*m/z + 

4.106±4.444 (n = 9)

4000 Q Trap

(Instrument B)

CE=0.057±0.01*m/z +

-4.815±6.384 (n = 14)

CE=0.035±0.015*m/z + 

6.49±8.615 (n = 9)

4000 Q Trap

(Instrument B’)

CE=0.057±0.009*m/z +

-4.256±5.752 (n = 18)

CE=0.031±0.018*m/z + 

7.082±10.3 (n = 9)

Table 1: Default and updated CE equations with 95% confidence intervals

for doubly and triply charged peptides for different MS platforms. Displayed

in parenthesis after each equation is the number of precursor measurements

used to calculate the regression.

Results:

Data Analysis:
Raw data from cycle 2 was imported into Skyline for peak area integration and for the determination

of the updated CE equations. See Figure 2 and 3 bellow.

Conclusions:

� In these experiments we have used a fully automated workflow, implemented in version 0.6 of the

open source software Skyline, to evaluate the effect of optimizing CE values across multiple instrument

platforms. By comparing peak areas at different CE values for different peptide sequences and precursor

charge-states we have quantified the improvement in sensitivity obtained by optimizing each transition for

each peptide individually compared to using a simple linear equation to predict CE based on the peptide

precursor mass.

� We have derived optimized linear equations for predicting CE values that are different from the

default equations recommended by the manufacturer or reported in the literature. These new equations

for predicting CE are available in the latest release of Skyline.

� With well optimized linear equations, we have shown losses of 8.4% of total peak area on average

compared with fully optimizing each transition.

� Understanding the variance in the transition peak area to CE relationship is critical to understanding

how any peak area optimization using CE will perform. We found that low concentrations for certain

peptides yielded measurements that were too noisy to support CE optimization. A similar effect occurs

when using an optimal CE value determined with a standard at high abundance to measure a low

abundance species in a real sample. Even if the measurement is made with the optimal CE, the

improvement in sensitivity over a less optimal CE will be indistinguishable at low intensity because the

variance from the measurement shot noise will overwhelm the small improvement in peak area.

� By simulating a differential proteomics experiment, where the only difference between groups of

technical replicates was the method of choosing the CE values, we showed that the loss in peak signal

intensity from using an optimized linear equation as opposed to optimizing each peptide was rarely

detectable as significant in this type of experiment.
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Reproducibility:

Figure 3 shows the reproducibility of the relative peak areas, calculated by integrating the TIC

chromatograms from ten replicate analyses, for the doubly charged peptide VLVLDTDYK.

Although we collected our data from 10 technical mass spectrometry replicates, most laboratories

derive “optimal” CE values from a single measurement. In these cases, peptides are injected once, and intensities

are measured over a range of CE values. The CE yielding the maximum intensity, by peak area, is chosen for all

future experiments. For this approach to work, the effect of CE on peak area must be reproducible enough that a

single measurement produces an accurate representation of the optimal CE value. See Figure 3 bellow.

Comparing Regression Coefficients

A comparison of  the default and optimized linear equations for our selected peptides, acquired on a 

TSQ Ultra, is shown in  the Figure 4.  These best fit linear regressions were computed separately for the doubly 

and triply charged peptide precursors.  The solid lines represent simple linear regressions of  the experimental 

values obtained during the CE optimization study. The dashed lines represent the plots for their respective 

default linear equations used for data acquisition (Table 1).  The same plots were generated for each of  the 

instrument platforms used in our analysis.
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Comparing Approaches

To compare the relative effect of different approaches for choosing CE values on the sensitivity of

measurement, we simulated these approaches using our data. Because CE values are commonly chosen from a

single set of measurements, we first chose one of our 10 replicates, designating it the training set. The training

set was used to calculate CE values for the remaining 9 replicates, designated as test sets. The four approaches

for calculating the CE we tested were:

�the CE value predicted by the default linear equation;

�the CE value predicted by a new linear equation calculated from the training set;

�the CE value that produced the maximum total peak area for the current precursor in the training set;

�the CE value that produced the maximum peak area for the current transition in the training set.

In each of the 9 test sets, the peak areas corresponding to the calculated CE values were selected, separately for

each approach, summed by precursor and normalized by the sum of the maximum measured areas for the

precursor transitions in the test set. This process was repeated, using each of the 10 replicates as the training set,

to produce a total of 90 trials for each peptide. The mean and standard deviation of the normalized area
percentage values, for each approach, on each platform, are illustrated in following Figure.

Figure 4: Comparison of the default and optimized linear

equations for our selected peptides, acquired on a TSQ-Ultra.

� Our data indicate that all linear equations should be

derived empirically for each respective charge-state,

rather than using linear equations derived from doubly

charged precursors across charge-states.

� To achieve performance in the optimal range, we

have shown linear equations should be reassessed on

new instruments. We also found no evidence of

significant variation in optimal CE between instruments

of the same type, or even varying gas pressure on a

single instrument.

Significance tests of difference in linear regression

coefficients between pairs of data sets, presenting p-values for the 
null hypothesis that two sample sets represent the same linear 

regression between precursor m/z and CE:


