Generating Quantitative Assays for Biomarker Development

Jeff Whiteaker, Ph.D.

Paulovich Laboratory, Fred Hutchinson Cancer Research Center

A LIFE OF SCIENCE

Reliable assays are available for <5% of human proteins.

1. Assay development is largely commercially-driven.

- Every company focuses on the same "popular" proteins; there are many "orphan" proteins.
- There's no coordinated global divide-and-conquer effort.
- Assay validation is prohibitively expensive, and many bad assays go to market.

2. Existing technologies are not readily scaled.

- High cost (\$100k \$2 million per protein assay)
- Long development lead time (1-2 years)
- High rate of failure
- Poor performance characteristics

Most of the human proteome is clinically not accessible!

The lack of "assays" to human proteins prevents potential new protein diagnostics from ever being tested.

- There are no assays for most human proteins. We desperately search commercial sources for assays to test candidates, but few assays are available.
- De novo assay generation is prohibitively expensive and requires expertise.
- Most candidates have no clinical utility, and we can't yet predict which will.
- Very few candidates are tested, and almost none achieves clinical validation.

Only 23 protein biomarkers have cleared the FDA since 2003.

SRM/MRM assays have the potential to dramatically impact protein biomarkers.

Advantages of SRM/MRM

- Robust
- Portable
- Reproducible
- Quantifiable reference standard

- Relatively less expensive
- Specific
- Multiplexable

Nat Biotechnol. 2009 27(7):633-41. Clin Chem. 2010 56(2):161-164.

Analytical performance of MRM-based assays is robust, but sensitivity is an issue.

The limit of quantification of SRM in neat plasma is 100-1000s of ng protein / mL.

Immuno-MRM assays couple immuno-enrichment of peptide analytes to targeted mass spectrometry.

Measure

SISCAPA uses an αpeptide antibody to enrich endogenous and spiked standard peptides

Anderson et. al., J Proteome Res. 2004, 3(2):235-44.

Immuno-MRM assays are sensitive and precise, and high-affinity monoclonals can be isolated.

- * 10 microliters plasma capture; achieve low pg/mL from 1 mL plasma
- * assumes complete trypsin digestion

Schoenherr *et. al. J Immunol Methods*. 2010, 353:49-61. Whiteaker *et. al. MCP*. 2010, 9:184-96.

Characterizing the process of assay generation

- What does it cost?
- How long does it take?
- What is the success rate?
- Are the assays multiplexable?
- Are they amenable to a verification study?

Immuno-MRM assays have been characterized for ~300 target peptides.

Success rates are high for generating immuno-MRM assays to proteotypic peptides.

Assay Grade	Approximate detection level	Number of assays	Percent of total
A	0.05 fmol/μL or <10 ng/mL	63	29%
В	0.5 fmol/μL or 10-100 ng/mL	53	25%
С	5 fmol/μL or 100 ng/mL	46	21%
D	50 fmol/μL or 1 μg/mL	32	15%
F	Not detected	22	10%
	Total	216	

per protein success	Number of antibodies that underwent affinity purification				
arades A-B assavs			1	2	3
9.44007.24000.90	Number immunogens	1	1/2		
		2		2/3	
	multiplexed per	3		2/4	1/1
	animai	4		5/8	5/7
		5	1/1	23/29	32/34
				1	1
Whiteaker et. al. Molecular and Cel	<i>Iular Proteomics.</i> 2011 , Apr;10(4	4):M110.005	645	79%	94%

Immuno-MRM assays are readily multiplexed.

We observed a 98% success rate for configuring 48-plex immuno-SRM assays.

Expanding multiplexing using MRM

150 peptides, 900 transitions

Jake Kennedy WOH, 3:50pm

Inter-laboratory reproducibility is high

Gene.Peptide	Interlab CV		
S100A8.AMV	10.8%		
S100B.ELI	14.2%		
CSF3.IQG	6.7%		
S100A8.ALN	5.5%		
S100A12.GHF	10.2%		
IL1RN.IDV	8.1%		
S100A7.GTN	7.1%		
S100A7.ENF	4.3%		
median	7.6%		

Kuhn et. al. Molecular and Cellular Proteomics. 2011 Dec 22. [Epub ahead of print]

Implementing assays in a biomarker verification setting across multiple laboratories.

Manually checking integration and adding annotation

Analytical CVs are acceptable for the majority of assays

Biological variation can be significantly higher.

Conclusions

- 1. There is a protein assay technology that can be scaled for precise, specific, multiplex quantification of large suites of human proteins in large sample sets; this has the potential to have impact across the biomedical sciences.
- 2. The Skyline software behind our development efforts has truly been enabling
 - 1. Transition selection, evaluation, and optimization
 - 2. Standardization of methods across laboratories/platforms
 - 3. Ease of method and data sharing

FHCRC

Paulovich laboratory

Jake Kennedy Chenwei Lin Travis Lorentzen *Regine Schoenherr* Mary Trute Harry Zhang Richard Ivey Ping Yan *Lei Zhao*

special thanks to Brendan MacLean and Mike MacCoss

<u>Others</u>

Steve Carr (Broad Institute) Eric Kuhn Sue Abbatiello

Leigh Anderson (Plasma Proteome Institute)

Terry Pearson (U Victoria) Matt Pope

Christoph Borchers (UVic/BC Proteomics Centre) Angela Jackson Derek Smith

Funding

- National Cancer Institute
- Paul G. Allen Family Foundation
- Entertainment Industry Foundation (EIF) and the EIF Women's Cancer Research Fund to the Breast Cancer Biomarker Discovery Consortium