Generating Quantitative Assays for Biomarker Development

Jeff Whiteaker, Ph.D.
Paulovich Laboratory, Fred Hutchinson Cancer
Research Center

Reliable assays are available for < 5% of human proteins.

1. Assay development is largely commercially-driven.

- Every company focuses on the same "popular" proteins; there are many "orphan" proteins.
- There's no coordinated global divide-and-conquer effort.
- Assay validation is prohibitively expensive, and many bad assays go to market.

2. Existing technologies are not readily scaled.

- High cost (\$100k - \$2 million per protein assay)
- Long development lead time (1-2 years)
- High rate of failure
- Poor performance characteristics

1000s candidate new protein diagnostics

Need an assay for

 each candidate
Clinical testing

FDA approval

The lack of "assays" to human proteins prevents potential new protein diagnostics from ever being tested.

- There are no assays for most human proteins. We desperately search commercial sources for assays to test candidates, but few assays are available.
- De novo assay generation is prohibitively expensive and requires expertise.
- Most candidates have no clinical utility, and we can't yet predict which will.
- Very few candidates are tested, and almost none achieves clinical validation.

Only 23 protein biomarkers have cleared the FDA since 2003.

SRM/MRM assays have the potential to dramatically impact protein biomarkers.

Advantages of SRM/MRM

- Robust
- Portable
- Reproducible
- Quantifiable reference standard
- Relatively less expensive
- Specific
- Multiplexable

Analytical performance of MRM-based assays is robust, but sensitivity is an issue.

The limit of quantification of SRM in neat plasma is $\mathbf{1 0 0 - 1 0 0 0} \mathrm{s}$ of ng protein / mL .

Immuno-MRM assays couple immuno-enrichment of peptide analytes to targeted mass spectrometry.

Measure

peptide antibody to enrich endogenous and spiked standard peptides

Immuno-MRM assays are sensitive and precise, and high-affinity monoctonals can be isolated.

LOD ${ }_{\text {protein }}=2.7 \mathrm{ng} / \mathrm{mL}$
$\mathrm{LOQ}_{\text {protein }}=6.3 \mathrm{ng} / \mathrm{mL}$
Average \%CV = 13.7\%

* 10 microliters plasma capture; achieve low $\mathrm{pg} / \mathrm{mL}$ from 1 mL plasma
* assumes complete trypsin digestion

Characterizing the process of assay generation

- What does it cost?
- How long does it take?
- What is the success rate?
- Are the assays multiplexable?
- Are they amenable to a verification study?

Immuno-MRM assays have been characterized for ~300 target peptides.

Synthetic Peptide QC

\checkmark Peptide purity
\checkmark Peptide concentration Develop methods \checkmark Skyline

- 7-8 months per tranche - 100s per tranche

Evaluate performance \& success rate

Success rates are high for generating immuno-MRM assays to proteotypic peptides.

Assay Grade	Approximate detection level	Number of assays	Percent of total	
A	$0.05 \mathrm{fmol} / \mu \mathrm{L}$ or $<10 \mathrm{ng} / \mathrm{mL}$	63	29%	
B	$0.5 \mathrm{fmol} / \mu \mathrm{L}$ or $10-100 \mathrm{ng} / \mathrm{mL}$	53	25%	
C	$5 \mathrm{fmol} / \mu \mathrm{L}$ or $100 \mathrm{ng} / \mathrm{mL}$	46	21%	
D	$50 \mathrm{fmol} / \mu \mathrm{L}$ or $1 \mu \mathrm{~g} / \mathrm{mL}$	32	15%	
F	Not detected	22	10%	

per protein success rates for generating grades A-B assays

Number of antibodies that underwent affinity purification

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	$1 / 2$		
$\mathbf{2}$		$2 / 3$	
$\mathbf{3}$		$2 / 4$	$1 / 1$
$\mathbf{4}$		$5 / 8$	$5 / 7$
$\mathbf{5}$	$1 / 1$	$23 / 29$	$32 / 34$
		\uparrow	\uparrow
(4):M110.005645	$\mathbf{7 9 \%}$	$\mathbf{9 4 \%}$	

Immuno-MRM assays are readily multiplexed.

Configure multiplex assays

We observed a 98\% success rate for configuring 48-plex immuno-SRM assays.

Equivalent performance at each mux level (98\%)

Analyte Name: VLDELTLAR

Response at all -plex levels are highly correlated

Log 10 Plex Peak Area Ratio

Expanding multiplexing using MRM

150 peptides, 900 transitions

Jake Kennedy WOH, 3:50pm

Inter-laboratory reproducibility is high

8-plex assay measured in three laboratories

Gene.Peptide	Interlab CV
S100A8.AMV	10.8%
S100B.ELI	14.2%
CSF3.IQG	6.7%
S100A8.ALN	5.5%
S100A12.GHF	10.2%
IL1RN.IDV	8.1%
S100A7.GTN	7.1%
S100A7.ENF	4.3%
median	7.6%

Kuhn et. al. Molecular and Cellular Proteomics. 2011 Dec 22. [Epub ahead of print]

Implementing assays in a biomarker verification setting across multiple laboratories.

Manually checking integration and adding annotation

Analytical CVs are acceptable for the majority of assays

Biological variation can be significantly higher.

Conclusions

1. There is a protein assay technology that can be scaled for precise, specific, multiplex quantification of large suites of human proteins in large sample sets; this has the potential to have impact across the biomedical sciences.
2. The Skyline software behind our development efforts has truly been enabling
3. Transition selection, evaluation, and optimization
4. Standardization of methods across laboratories/platforms
5. Ease of method and data sharing

FHCRC

Paulovich laboratory
Jake Kennedy
Chenwei Lin
Travis Lorentzen
Regine Schoenherr Mary Trute Harry Zhang Richard Ivey
Ping Yan
Lei Zhao

Others

Steve Carr (Broad Institute) Eric Kuhn
Sue Abbatiello
Leigh Anderson (Plasma Proteome Institute)
Terry Pearson (U Victoria)
Matt Pope
Christoph Borchers (UVic/BC Proteomics Centre)
Angela Jackson
Derek Smith

Funding

- National Cancer Institute
- Paul G. Allen Family Foundation
- Entertainment Industry Foundation (EIF) and the EIF Women's Cancer Research Fund to the Breast Cancer Biomarker Discovery Consortium

