

Effectively Dealing with Transition Selection and Data Analysis for Multiplexed Quantitative SRM-MS Assays across Multiple Vendor Instruments

Susan Abbatiello, Ph.D. Skyline User's Meeting May 20, 2012

CPTAC – Clinical Proteomic Technologies Assessment for Cancer

NCI established CPTAC October 2006 to Support Biomarker Development

• Evaluate and standardize proteomic <u>verification</u> platforms for analysis of cancer-relevant proteomic changes in human clinical specimens.

Is SID-MRM-MS Technology Reproducible, Transferrable, and Sensitive? Yes! – Especially with Skyline!

Prior to analyzing complex samples, are LC-MRM-MS systems running in optimal condition?

Michrom Mix 6 bovine proteins, digested 50 fmol/uL **12 Laboratories** 4 MS Vendors 7 MS models 5 LC models

Site 52, ABI 4000 QTRAP Site 56, ABI 4000 QTRAP Site 56A, ABI 5500 Site 56B, Agilent 6460 ChipCube Site 73, ABI 4000 QTRAP Site 32, ABI 4000 QTRAP Site 95, ABI 4000 QTRAP Site 98, ABI 4000 QTRAP Site 86, ABI 4000 QTRAP Site 86A, Waters Xevo Site 90, Agilent 6410 ChipCube Site 65, Thermo Vantage Site 54, ABI 4000 QTRAP Site 19, ABI 4000 QTRAP Site 19A, Agilent 6410 ChipCube Site 20, Thermo TSQ Quantum

Establish Instrument Specific Ranges for

- o RT Variability
- o Peak Area
- o Peak Width
- o Carry over

o Column conditioning

Development of a System Suitability Protocol for Multiple Instrument Platforms

Tools were created to handle workflow and data

Problems Can Be Visualized Early: Peak Area Stability in Skyline

Peak area stability over 10 replicates Site Z

Peak area CV over 10 replicates Site Z

CPTAC VWG Study 9 – Targeting 34 Proteins in Depleted Plasma, 125 Peptide Targets

Goals:

- Demonstrate cancer relevancy
- Prove feasibility of > 100-plex (34 proteins) assays in plasma
- Improve LOD and LOQ by depleting abundant proteins
- Demonstrate true quantitative <u>accuracy</u> and evaluate depletion/digestion recovery using heavy labeled proteins
- Conduct blinded verification study to assess accuracy, precision and reproducibility across multiple sites and instrument platforms
- Evaluate system suitability test in context of this large-scale inter-lab study

34 proteins, 1095 transitions, 9 participating sites, 14 instruments, 4

Peptide and Transition Selection is Streamlined using Skyline

CE publication: B. MacLean et al, 2010, Anal Chem

Spectral Libraries Focus Peptide and Transition Selection

Retention Time Scheduling: A Necessity for >100 Transitions

500

400

200

100

Scheduling puts rigorous
 demands on RT reproducibility[™]

- Peak width and RT drift are often limiting factors
- Different peptides shift to various degrees.

- Large numbers of transitions require narrow RT windows or longer cycle times
- Cycle times may be governed by chromatographic peak width
- Skyline helps gauge number of concurrent transitions based on RT window

Retention Time Scheduling for 1095 Transitions is Challenging – and Different from System to System

Data Quality Filtering and Custom Annotation by Operators for Data Sets Improves LOD

Results Grid							
	Total Area	signal quality	RT scheduling problem	general r	emarks	do not use	Tia
	110472	peak tailing / poor peak shape 🛛 🗸			~		
	125381	~	×		~		
	127262		peak outside scheduling window.		~		Skyline
▶	138775	~	¥		~		okymie
	138484	very weak signal	×				
	170053	peak tailing / poor peak shape	~			raw data	custom
	174726	shoulder	~				annotation
	192156	transition missing	· · · · · · · · · · · · · · · · · · ·		N		
	203884	narrow peak (not enough points)	, `		Ö		•
	210323	· · · · · · · · · · · · · · · · · · ·					±
F	lags p	otentially bad trai poor peak shape interferences missing data es manual inspect onable data	uDIT" nsitions e	(fmol)	0.0 0.1	44 amol/uL Waters	23 amol/uL Waters
F ()	educe	es subjectivity in o o. Mani et al. Clin. Chem	data analysis			Xevo IQS	Xevo TQS

0101

Automatic Integration as Good as Manual Intervention (but takes less time)

Comparison of Skyline vs Manual integration

QuaSAR Overview: 00 Quantitative Statistical Analysis of Reaction Monitoring Results 01010

Poster ThP12, #284

Outcome of CPTAC Study 9 is Promising for the Use of Highly Multiplexed SID-MRM-MS Assays 010110

Median CV at each Concentration,

Good Reproducibility and Accuracy is Demonstrated Through Blinded Samples

¹⁵N Protein Standards Improve Quantitative Accuracy

Poster MP01, #004

Skyline Facilitates Rapid Data Analysis Through Overview Plots

Peak Area Replicate View, Light and Heavy

1010110

Replicate

Peak Area CV Plots Provide Quick Assessment of Reproducibility Across a Series of Samples

010

Replicate

Quick View of All Replicates

Interference Visualization

Transitions

Peak Area Percentage

Replicate

Summary

- First large-scale interlab study to include 15N protein reagents and >100 peptide targets (>350 peptide forms)
- Sensitivity improvement from previous study by using depleted plasma, adjusting the gradient
- Transition selection and MS method transfer across 4 instrument platforms facilitated through Skyline
- Peak Area and Retention Time views help quickly assess data quality
- Customizable reports from Skyline enable down-stream processing, helps remove subjectivity of data evaluation, and increases data analysis throughput
- Skyline helps maintain objective processing of data, requiring less manual tweaking
- It's free, it is easy, and it will process your data

CPTAC VWG Participants & Acknowledgements

Broad Institute: Susan Abbatiello, Terri Addona, Steven A. Carr, Hasmik Keshishian, D.R. Mani, Michael Burgess, James Markell

Buck Institute for Age Research:

Michael P. Cusack, Bradford W. Gibson. Jason M. Held, Birgit Schilling Fred Hutchinson Cancer Research Center:

Amanda G. Paulovich, Jeffrey R. Whiteaker, Shucha Zhang

Indiana University: Mu Wang, Jong-Won Kim, Jimsan You

Massachusetts General Hospital:

Steven J. Skates

Memorial Sloan-Kettering Cancer Center:

Paul Tempst, Mousumi Ghosh National Cancer Institute: Emily Boja Tara Hiltke, Christopher Kinsinger, Mehdi Mesri, Henry Rodriguez, Robert Rivers

NISS: Xingdong Feng, Nell Sedransk, Jessie Xia **NIST:** Paul Rudnick New York University: Thomas A. Neubert, Asa Wahlander, Sofia Waldemarson, Pawel Sadowski, John Lyssand **Plasma Proteome Institute:** N. Leigh Anderson Purdue University: Charles Buck, Fred Regnier, Dorota Inerowicz, Vicki Hedrick University of California, San Francisco: Simon Allen, Susan J. Fisher, Steven C. Hall, **University of North Carolina:** David Ransohof University of Victoria: Christoph H. Borchers, Angela Jackson, Derek Smith University of Washington: Michael MacCoss, Brendan MacLean, Daniela Tomazela Vanderbilt University: Daniel Liebler, Kent Shaddox, Corbin Whitwell, Lisa Zimmerman

010

0101011010

Funding: National Cancer Institute

Skyline... So easy a baby can do it

1000 Q1/Q3 Pairs – AB Sciex 4000 QTRAP

Gradient Optimization will Improve Sensitivity and Data Acquisition

What is the ideal concentration range?

Linnet & Kondratovich, (2004) Clin Chem Keshishian et al, (2009) MCP

- Generate preliminary curves (16 pts)
- Pick a range and number of points to cover most peptides

16 Point Curve at Selected CPTAC Sites Shows Good Reproducibility and Sensitivity

LOD is Highly Dependent Upon System Performance: Chromatography and Ionization

Unstable ESI was a major factor in poor detection and reproducibility

System Suitability assessment detects poor system performance