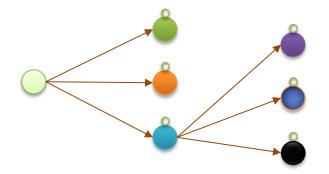
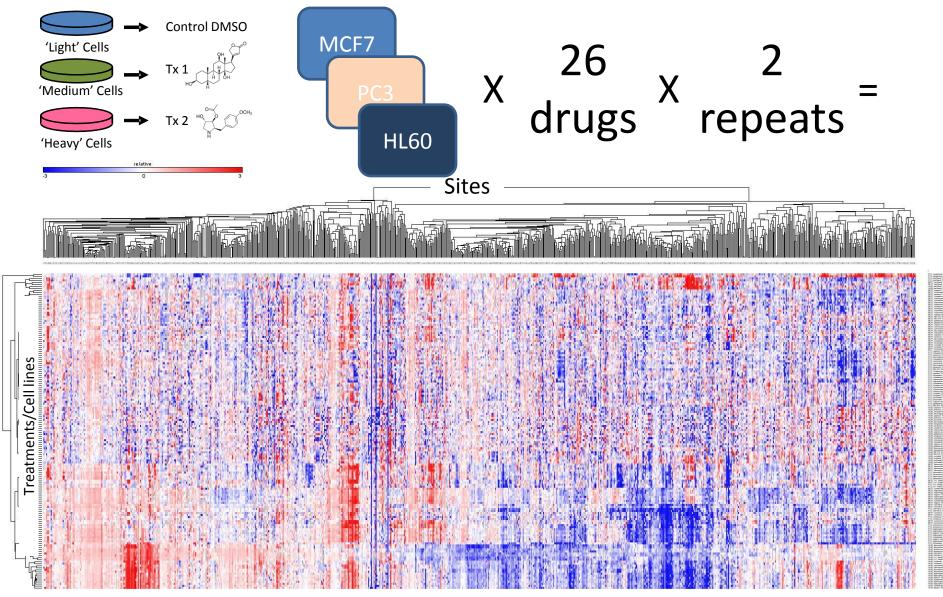
Discovery to Targets for a Phosphoproteomic Signature Assay: One-stop shopping in Skyline

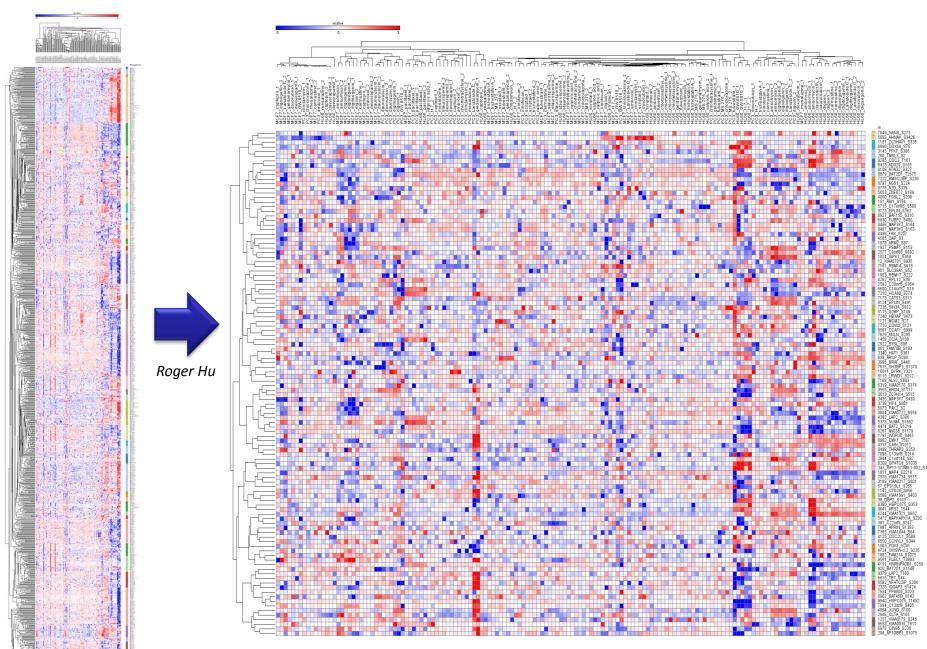

Jake Jaffe Skyline Users Meeting June 2013

Proteomics and Biomarker Discovery


Idea: Phosphosignaling is coordinated!

- Phosphosignaling is likely coordinated
 - Kinase-substrate relationships tend to be 1-to-many
 - A priori expectation of coordinate regulation of sites

- Don't need to monitor every phosphosite
- Can we identify a few that we can reliably monitor?
 - Go *wide* instead of *deep*



- Largest systematic set of perturbations with phosphoproteomics readout in existence
 - Over 10,000 phosphosites observed
- Over 1,200 sites present in >75% of all experiments

BROAD

Jinal Patel, Xiaodong Lu

Dimensionality reduction: >1000 to 55 with 2x probe redundancy

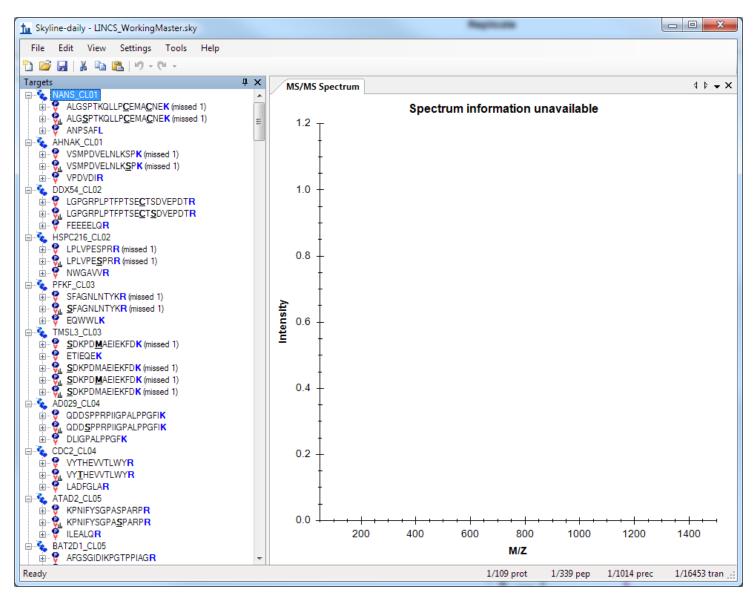
Now for the hard part... Building the P100 Assay

Optimal Phosphosite Quant Requires Multiple Inputs

- Level of phosphopeptide
 - Picked "best" representative peptides from each cluster
 - Observability, site localization, etc.
- Level of non-phosphophorylated cognate
 - Picked based on above
- Level of a non-involved peptide
 - Control for protein level
 - Gleaned from all in-house MaxQuant data

Assay Optimization Strategy

- Identify and order peptides
- Configure Skyline document
 - Sequence identities
 - Spectra libraries
- Characterize peptides
 - QC + establish RT properties
- Refine spectral libraries
- Configure final assay

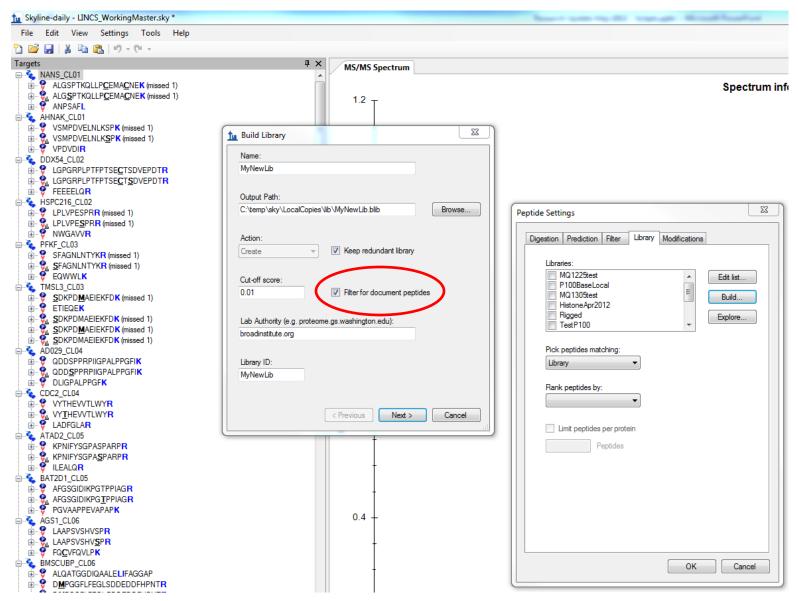

Step 1: Get Sequences into Skyline

Incast		Peptide Settings
a Insert Peptide List		Digestion Prediction Filter Library Modifications
Peptide Sequence	Protein Name	Structural modifications:
HMFVHYH	MAP3K2_CL11	Phospho
DRS[+80]SPPPGYIPDELHQVAR	MAP3K2_CL11	Oxidation (M) Phospho (ST)
DRSSPPPGYIPDELHQVAR	MAP3K2_CL11	Phospho (Y)
LGMLSPEGTC[+57]K	FAS_CL12	Max variable mods: Max <u>n</u> eutral losses:
IPHLAIHLQR	DAP_CL12	
LGMLS[+80]PEGTC[+57]K	FAS_CL12	
SS[+80]PPEGKLETK	DAP_CL12	Isotope label type:
SSPPEGKLETK	DAP_CL12	heavy v
LGM[+16]LS[+80]PEGTC[+57]K	FAS_CL12	Isotope modifications:
DGAWGAFR	FAS_CL12	Label:13C(5) (V)
LGM[+16]LSPEGTC[+57]K	FAS_CL12	Label:13C(6) (C-term R)
EDLESSGLQR	ARM2_CL13	Label:2H(4) (K)
LEAAEER	LAP18_CL13	Internal standard types:
RNS[+80]SEASSGDFLDLK	ARM2_CL13	ight
RNSSEASSGDFLDLK	ARM2_CL13	v neavy v medium
RAS[+80]GQAFELILS[+80]PR	LAP18_CL13	
RASGQAFELILSPR	LAP18_CL13	OK Cancel
▶*		
		Check for Errors

- Peptide shorthand makes it easy to insert modified sequences
 - Make sure modifications are present in document!

Entire assay document configured in one fell swoop

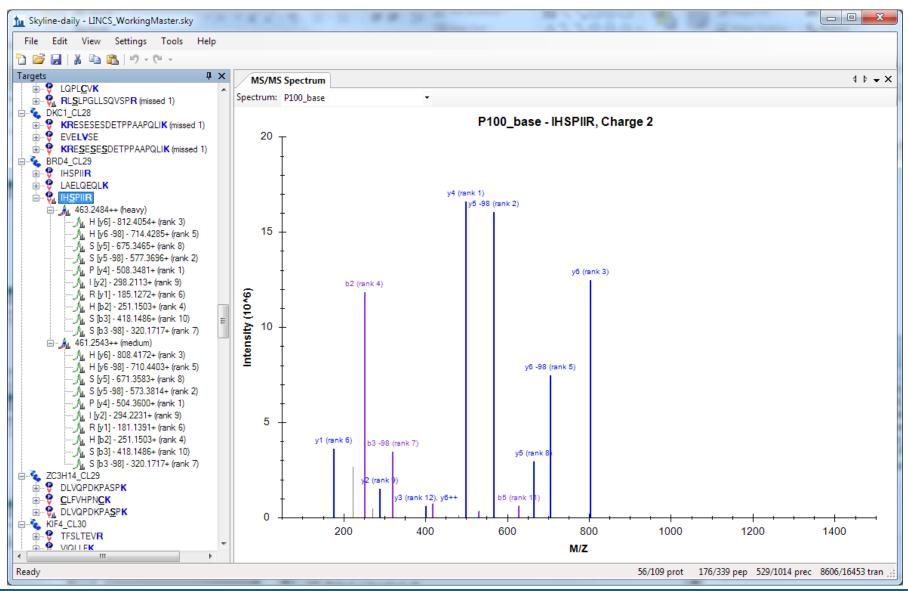
Discovery and Targeted Platforms are Different


MaxQuant

- Used for all discovery data processing
- Performed all SILAC quantification
- MEGA result file
 - MS/MS table (txt)
 - 2.8 GB

- Skyline
 - Targeted proteomics
 environment of choice
 - Now supports MaxQuant / Andromeda formats

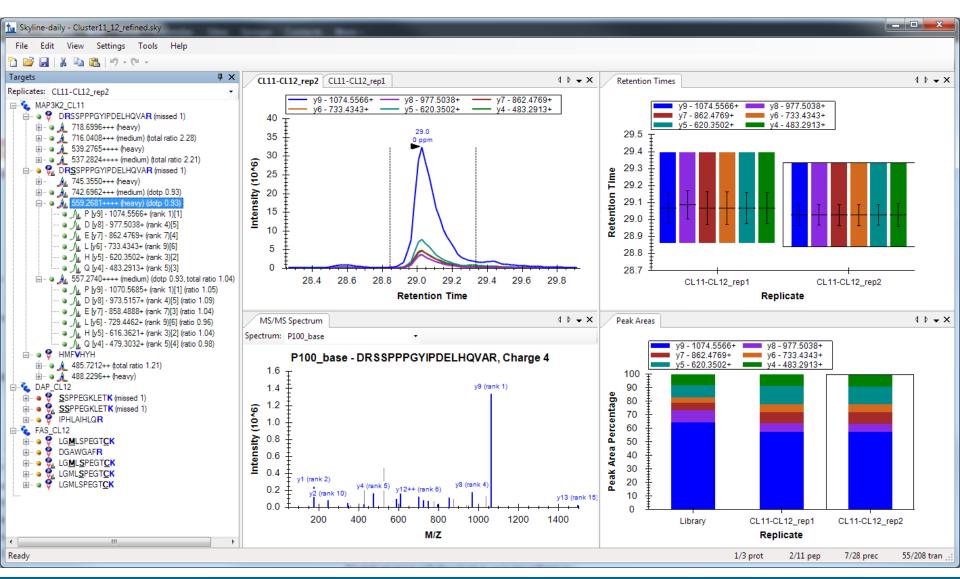
Skyline Spectral Library Building



Easily done even when data are distributed

tu Build Library	×	
Input Files: msms.txt veryselected_msms.txt Select / deselect all	Add Files Add Directory Add Paths	Add Paths to Input Files N:\Tanya\20130222_MediaTest_McF7_argpro_Heavy\combined\bt\msms.bt N:\Tanya\20130221_MediaTest_McF7_argpro_Heavy\combined\bt\msms.bt N:\Tanya\20130221_MediaTest_McF7_DMEM_v1225\combined\bt\msms.bt N:\Emily\032013_Fluor34\combined\bt\msms.bt N:\Tanya\20130221_MediaTest_McF7_DMEM\combined\bt\msms.bt N:\Lola\AMD\F20130303_TA_PPI_Mock\combined\bt\msms.bt N:\Lola\AMD\F20130303_TA_PPI_Mock\combined\bt\msms.bt N:\Emily\032013_Fluor34\combined\bt\msms.tx OK Cancel
< Previous Finish Cancel		

Instant Focused Spectral Library from > 2.8Gb Raw Spectra



Peptide QC and RT Establishment

- Run mixtures of peptides conforming to analysis clusters
 - QExactive MS
 - Inclusion lists pulled from Skyline doc
 - Unscheduled...but fully targeted
- Full-scan hi-res MS enables proof positive ID
 - Allows comparison to library as a whole spectrum
 - Mass accuracy increases confidence
 - Can observe potential interferents when porting to triple quad

Full-scan QC allows for proof-positive refinement

Assay Optimization Strategy Revisited

- Identify and order peptides
- Configure Skyline document
 - Sequence identities
 - Spectra libraries
- Characterize peptides
 - QC + establish RT properties
 - Will later use iRT strategy for assay scheduling
- Refine spectral libraries
- Configure final assay

Distribution of the assay with Panorama

- All of our work will be available to other labs
 - To implement the assay at multiple sites
- Ensure data analysis consistency
- Clearing house of assay data
- Communication with other project data infrastructures

Conclusions

- Skyline has contributed immensely to rapid configuration of our assay:
 - Easy sequence import even for modified peptides
 - Easy spectral library creation based on discovery data
 - Helpful in validation of synthetic peptides
 - Sets groundwork for scheduling targeted assays
 - Makes assay portable
 - Panorama extension will make assay distributable
- Feedback / support cycle of Skyline development can drive projects in real time

Acknowledgements

- LINCS Program and Program Officers
 - U01 CA164186-01/Jaffe
- MacCoss Lab, Univ. of Washington
 - Mike MacCoss co-PI
 - Brendan MacLean
 - Kaipo Tamura
 - Vagisha Sharma
- Broad Institute Proteomics Platform
 - Jinal Patel
 - Susan Abbatiello
 - Lindsay Pino
 - Philipp Mertins
 - Steve Carr

- Broad Institute LINCS Centers
 - Todd Golub
 - Aravind Subramanian
 - Xiaodong Lu
 - Roger Hu

