

Expanding Skyline's Capabilities to Small Molecule Data Analysis

Laura G. Dubois

Duke Proteomics and Metabolomics Core Facility

Duke Center for Genomic and Computational Biology

Goals and Objectives

- Growth of Skyline utilization in our lab
- How to create a Skyline document for small molecule applications
- Exemplar small molecule workflows
- Skyline future additions and features to aid metabolomics community

Skyline Utilization

- Duke Proteomics Core began using Skyline for targeted proteomics in mid-2010
 - Backbone for all of our SRM and PRM pipelines
- Routinely use it as a system suitability/QC tool on all mass spectrometers
- Early 2013 development of metabolomics platforms, and deployment soon thereafter
 - Positive ion and negative ion lipid profiling, Met-Pathway analysis, oxylipins, Biocrates p180 panel, fatty acid analysis, bile acid panel, and hydroxycholesterol analysis

Targeting a Metabolite Pathway of Interest: Methionine

Polar Metabolites: Methionine Pathway Analysis

Create an Excel Flat "Library" File

Molecule List Name Precursor Name		Precursor Formula	Precursor Charge	Precursor RT	Precursor CE	Product m/z	Product Charge	
Amino Acid	Methionine	C5H12NO2S	1	2.5	15	104.07	1	
Amino Acid	d3-Methionine	C5H9H'3NO2S	1	2.5	15	107.09	1	
Amino Acid	Isoleucine	C6H14NO2	1	3.05	15	86.096	1	
Amino Acid	Leucine	C6H14NO2	1	3.13	15	86.096	1	
Amino Acid	d3-leucine	C6H11H'3NO2	1	3.13	15	89.1	1	
Amino Acid	Phenylalanine	C9H12NO2	1	3.27	15	120.08	1	
Amino Acid	13C6-Phenylalanine	C3C'6H12NO2	1	3.27	15	126.11	1	
Amino Acid	Arginine	C6H15N4O2	1	2.01	15	116.07	1	
Amino Acid	13C5-Arginine	C1C'5H15N4O2	1	2.01	15	121.11	1	
Amino Acid	Ornithine	C5H13N2O2	1	1.1	15	70.07	1	
Amino Acid	Ornithine	C5H13N2O2	1	1.1	15	116.07	1	
Amino Acid	d2-ornithine	C5H11H'2N2O2	1	1.1	15	72.07	1	
Amino Acid	d2-ornithine	C5H11H'2N2O2	1	1.1	15	118.07	1	
Organic Acid	creatine	C4H10N3O2	1	1.1	15	90.06	1	
Organic Acid	d3-creatine	C4H7H'3N3O2	1	1.1	15	93.06	1	
5'-methylthioadenosine	MTA	C11H16N5O3S	1	3.4	15	136.1	1	
5'-methylthioadenosine	d3-MTA	C11H13H'3N5O3S	1	3.4	15	136.1	1	
S-adenosyl methionine	SAM	C15H23N6O5S	1	3	15	250.11	1	
S-Adenosyl homocysteine	SAH	C14H21N6O5S	1	3	15	136.08	1	
Polyamine	Spermidine	C7H20N3	1	3.59	15	129.15	1	
Polyamine	Spermine	C10H27N4	1	3.82	15	112.112	1	

Skyline tutorial based on these data:

https://skyline.gs.washington.edu/labkey/wiki/home/software/Skyline/page.view?nam e=tutorial_small_molecule (April 2015)

Import into Skyline – Edit \rightarrow Insert \rightarrow Transition List

Met-Pathway in Skyline

Export Transition List/Method

Skyline Document

x Export Method Instrument type: OK Waters Xevo Cancel Single method One method per protein Ignore proteins Multiple methods Max concurrent transitions: 10000 Methods: 1 Optimizing: None Ŧ Method type: Scheduled Template file: Y:\RawData\3805\KIT3-FIA_LCMS_prc Browse ...

See Brian Pratt's poster #414 on Mon. for additional details

Import and Integrate Raw Data

Results – Met-Pathway Analysis with Amino Acid Depletion

Tang X et al. (2015) Comprehensive Profiling of Amino Acid Response Uncovers Unique Methionine-Deprived Response Dependent on Intact Creatine Biosynthesis. PLoS Genet 11(4): e1005158. doi:10.1371/journal.pgen.1005158

Oxysterols

- Hydroxycholesterol method development in progress
 - Investigators interested in HCs over a range of applications (breast milk, ependymal cells, animal high-fat diet studies, engineered mammalian cells, etc.)
- Currently interested in 6 isoforms and cholesterol: 20-HC, 22(R)-HC, 22(S)-HC, 24(S/R)-HC, 25-HC, 27-HC
- Built a Skyline method that can be transferred to other labs, viewed by our PIs when reviewing data, and easily updated as development progresses (changes to chromatographic separation)

Presence of 24(S) and 25-HC in Breast Milk

Analysis of Standards Mix

24(S)-HC across several sample types

Standard Curves

- Peak areas generated in Skyline but 3-point standard curves were generated from an export to Excel
 - Future Skyline feature

Using Skyline for Lipidomics Verification

- Cancer cell line under drug treatment
 - UPLC coupled to Synapt G2 HDMS system for high res differential lipidomics analysis
 - 5 biological reps
 - Data analyzed in Progenesis QI
- A cluster of compounds was differentially expressed and putatively identified in Progenesis QI, showing several fatty acids:

Downregulated with Drug

Upregulated with Drug

See Will Thompson's poster #251 on Wed. for additional details

Accepted Compound IDAccepted DescriptionLMSP00000001N-(tetradecanoyl)-deoxysphing-4-enine-1-sulfonateLMGP02010302PE(14:0/16:0)

ID	Accepted Description							
LMFA01030385	7Z,11Z,14E-eicosatrienoic acid							
LMSP02020011	Cer(d18:0/24:1(15Z))							
LMFA04000049	docosapentaenoic acid							
LMFA01030120	Linoleic acid							
LMFA01030002	Oleic acid							
LMGP06010011	PI(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))							

Accented Compound

Full-Scan (MS1) Measurement – Method Setup

Validation in Skyline

Biocrates Absolute IDQ p180 Assay Layout and Approach

96-well plate layout

double blank
PBS 'zero' samples
Calibration curve
Low, Mid, High QC Stds
Pooled Study QC
Global Reference QC
Study Samples

Add Internal Standards and Samples, Dry Dry Derivatize with PITC Reagent Dilute and Buffered MeOH Dilute and Analyze by FIA-MS or LC-MS Inter-day reproducibility of Biocrates AbsoluteIDQ p180 kit GoldenWest Biologicals pooled serum reference sample on each plate

Biocrates Absolute IDQ p180 Quantitative Analysis of 5 Metabolite Classes

<u>156</u> analyte-specific MS/MS transitions 40 Acylcarnitines

- 15 Sphingomyelins
- 90 Phosphatidylcholines (PC) and Lyso-PC
- 11 stable-isotope internal standards

- <u>62</u> retention time scheduled transitions 22 amino acids
- 18 biogenic amines
- 20 stable-isotope internal standards

Standardize and Harmonize Across Experiments and Laboratories

Biocrates Absolute IDQ p180 Quantitative Analysis of 5 Metabolite Classes

FIA-MS/MS

LC-MS/MS

"Semiguantitative"

"Quantitative"

▲ Std. Curve • QC standards • Samples

TargetLynx Peak Integration – **Bottleneck for Biocrates p180 Analyses**

TargetLynx - 4097 Plate 6 UPLC.gld File Edit View Display Processing Window Help

😹 🖥 🕼 🖾 🖾 🖾 🖓 📢 🚯 • | 🐎 🚸 • | 4{ - }> • | 🕅 🖾 💷 💷 🔟 🕥 🔘 🥏 | 🗲 🛄 🍠 | 3

								7 tice				
4	# Name	Type	Std Co	RT	Area	IS Area	Response	Height	IS Height	Primary Flags	Conc	%Dev
1	1 1 KIT2-0-8114 1007800490 01 0 1 1 01 10000001	Blank										
2	2 2 KIT2-0-8114_1007800490_01_0_1_2_01_10000001 F	Blank										
3	3 3 KIT2-0-8114_1007800490_01_0_1_3_01_10000001 F	Blank										
4	4 4 KIT2-0-8114_1007800490_13_0_1_1_10_11000002 5	Solvent		3.15	22.885	8708.736	0.003	852	281868	bbl		
5	5 KIT2-0-8114_1007800490_25_0_1_1_10_11000002 5	Solvent				9408.548			300224			
6	6 KIT2-0-8114_1007800490_37_0_1_1_10_11000002 5	Solvent				9744.182			303678			
7	7 KIT2-0-8114_1007800490_49_0_1_1_02_437301 5	Standard	20.000	3.14	1350.784	10434.272	0.129	43104	330302	bb	16.77	-16.2
8	8 KIT2-0-8114_1007800490_61_0_1_13_437314 5	Standard	40.000	3.14	2537.749	9017.986	0.281	81642	277532	bb	37.99	-5.0
9	9 9 KIT2-0-8114_1007800490_73_0_1_1_14_437328 5	Standard	200.000	3.14	11495.138	7842.961	1.466	367216	240423	bb	203.34	1.7
1	10 10 KIT2-0-8114_1007800490_85_0_1_1_15_437331 5	Standard	400.000	3.14	20445.189	7075.946	2.889	644237	219771	bb	402.13	0.5
1	11 11 KIT2-0-8114_1007800490_02_0_1_1_16_437345 5	Standard	800.000	3.14	42933.809	7743.845	5.544	1354149	245472	bb	772.82	-3.4
1	12 12 KIT2-0-8114_1007800490_14_0_1_17_437359 5	Standard	1200.000	3.14	43592.402	4877.229	8.938	1376658	157322	bb	1246.66	3.9
1	13 13 KIT2-0-8114_1007800490_26_0_1_1_18_437362 5	Standard	1600.000	3.14	47376.008	4590.787	10.320	1495151	146349	bb	1439.61	-10.0
1	14 14 KIT2-0-8114_1007800490_38_0_1_1_03_493393	QC	0.000	3.14	60040.789	29084.479	2.064	1882887	928471	bb	286.93	
1	15 15 KIT2-0-8114_1007800490_50_0_1_1_04_493401 (QC	0.000	3.14	108044.703	21690.535	4.981	3437538	690281	bb	694.20	
1	16 16 KIT2-0-8114_1007800490_62_0_1_1_05_493415	QC	0.000	3.14	143615.953	19580.100	7.335	4543807	623825	bb	1022.82	
1	17 17 KIT2-0-8114_1007800490_74_0_1_1_00_1007791711 /	Analyte		3.14	91563.719	30969.305	2.957	2880098	968088	bb	411.51	
1	18 KIT2-0-8114_1007800490_86_0_1_1_00_1007791726 /	Analyte		3.14	90361.398	29771.859	3.035	2818454	947603	bb	422.48	
1	19 19 KIT2-0-8114_1007800490_15_0_1_1_00_1007791731 /	Analyte		3.14	67450.086	33271.941	2.027	2083555	1038697	bb	281.75	
2	20 20 KIT2-0-8114_1007800490_51_0_1_1_00_1007795548	Analyte		3.14	86201.633	23210.479	3.714	2693094	722493	bb	517.25	
2	21 21 KIT2-0-8114_1007800490_63_0_1_1_00_1007795552 /	Analyte		3.14	83404.367	20872.986	3.996	2614318	653023	bb	556.61	
2	22 22 KIT2-0-8114_1007800490_75_0_1_1_00_1007795567	Analyte		3.14	117645.125	31814.430	3.698	3770236	988979	bb	515.01	

- 0 X

Biocrates Analysis in Skyline

Conclusions

- Skyline currently being used across multiple metabolomics platforms in our lab
 - Enables method/data sharing and improves transparency of metabolomics experiments
- Ongoing discussions between Skyline and Biocrates teams to address the bottleneck in Biocrates analyses (beneficial for all vendor platforms) and the hurdle to import data into MetIDQ for qualification
- Skyline features requested and in progress:
 - MS2 library viewing, building, and matching (enabled for proteomics):
 - Building targeted MS2 methods
 - Verification in MSE analysis
 - Heavy/light isotope standard grouping for quantification (enabled for proteomics)
 - Improvements in peak integration
 - Quantification against calibration curves

Duke Proteomics and Metabolomics Core

http://www.genome.duke.edu/cores/proteomics/

Arthur Moseley Will Thompson Erik Soderblom

Matthew Foster Lisa St. John-Williams

THE SCIENCE OF WHAT'S POSSIBLE.

